scholarly journals Transcriptional Dynamics of Grain Development in Barley (Hordeum vulgare L.)

2019 ◽  
Vol 20 (4) ◽  
pp. 962 ◽  
Author(s):  
Jianxin Bian ◽  
Pingchuan Deng ◽  
Haoshuang Zhan ◽  
Xiaotong Wu ◽  
Mutthanthirige Nishantha ◽  
...  

Grain development, as a vital process in the crop’s life cycle, is crucial for determining crop quality and yield. However, the molecular basis and regulatory network of barley grain development is not well understood at present. Here, we investigated the transcriptional dynamics of barley grain development through RNA sequencing at four developmental phases, including early prestorage phase (3 days post anthesis (DPA)), late prestorage or transition phase (8 DPA), early storage phase (13 DPA), and levels off stages (18 DPA). Transcriptome profiling found that pronounced shifts occurred in the abundance of transcripts involved in both primary and secondary metabolism during grain development. The transcripts’ activity was decreased during maturation while the largest divergence was observed between the transitions from prestorage phase to storage phase, which coincided with the physiological changes. Furthermore, the transcription factors, hormone signal transduction-related as well as sugar-metabolism-related genes, were found to play a crucial role in barley grain development. Finally, 4771 RNA editing events were identified in these four development stages, and most of the RNA editing genes were preferentially expressed at the prestore stage rather than in the store stage, which was significantly enriched in “essential” genes and plant hormone signal transduction pathway. These results suggested that RNA editing might act as a ‘regulator’ to control grain development. This study systematically dissected the gene expression atlas of barley grain development through transcriptome analysis, which not only provided the potential targets for further functional studies, but also provided insights into the dynamics of gene regulation underlying grain development in barley and beyond.

2021 ◽  
Author(s):  
Mortaza Khodaeiaminjan ◽  
Véronique Bergougnoux

Barley (Hordeum vulgare L.) belongs to small grain cereals that cover more than 78% of the daily calorie consumption of humans. With a prediction of 9.7 billion humans in 2050 (FAO stats) and climatic changes, the question of increasing small grain cereal’s production has become an agricultural challenge. Drought exerts a strong environmental pressure, causing large yield losses worldwide. Therefore, understanding the mechanisms responsible for grain development from the fertilization to the mature dry grain is essential to understand how drought can affect this developmental program. In this book chapter, we present the physiological, molecular and hormonal regulation of barley grain development. In a second part, we describe the consequences of drought at different stage of barley development, with a special focus on the reproductive phase. Finally, in the last part, we present the different methods used to decipher new genetic information related to drought-tolerance. All this knowledge contributes to understanding the tolerance mechanisms of barley and to developing breeding strategies aiming to bring about new varieties with sustained yield in harsh conditions.


Sign in / Sign up

Export Citation Format

Share Document