scholarly journals Effect of Water Chemistry on Antimony Removal by Chemical Coagulation: Implications of ζ-Potential and Size of Precipitates

2019 ◽  
Vol 20 (12) ◽  
pp. 2945 ◽  
Author(s):  
Muhammad Ali Inam ◽  
Rizwan Khan ◽  
Muhammad Akram ◽  
Sarfaraz Khan ◽  
Ick Tae Yeom

The process of coagulation and precipitation affect the fate and mobility of antimony (Sb) species in drinking water. Moreover, the solubility and physico-chemical properties of the precipitates may be affected by the media chemistry. Accordingly, the present study aimed to investigate the removal of Sb(III, V) species by ferric chloride coagulation under various water chemistry influences with a particular focus on the role of the properties of the precipitates. The results indicated that the amount of Sb(III) removed increased with increasing solution pH, showing the insignificant effects of the hydrodynamic diameter (HDD) and ζ-potential of the precipitates. However, no Sb(V) removal occurred at alkaline pH values, while a highly negative ζ-potential and the complete dissolution of precipitates were observed in the aqueous solution. The solution pH was also useful in determining the dominant coagulation mechanisms, such as co-precipitation and adsorption. The Fe solubility substantially affects the Sb removal at a certain pH range, while the HDD of the precipitates plays an insignificant role in Sb removal. The presence of divalent cations brings the ζ-potential of the precipitates close to point of zero charge (pzc), thus enhancing the Sb(V) removal at alkaline pH conditions. Pronounced adverse effects of humic acid were observed on Sb removal, ζ-potential and HDD of the precipitates. In general, this study may provide critical information to a wide group of researchers dealing with environmental protection from heavy metal pollution.

1992 ◽  
Vol 100 (2) ◽  
pp. 181-193 ◽  
Author(s):  
S Spires ◽  
T Begenisich

The actions of divalent cations on voltage-gated ion channels suggest that these cations bind to specific sites and directly influence gating kinetics. We have examined some chemical properties of the external divalent cation binding sites on neuronal potassium channels. Patch clamp techniques were used to measure the electrophysiological properties of these channels and Zn ions were used to probe the divalent cation binding site. The channel activation kinetics were greatly (three- to fourfold) slowed by low (2-5 mM) concentrations of Zn; deactivation kinetics were only slightly affected. These effects of Zn were inhibited by low solution pH in a manner consistent with competition between Zn and H ions for a single site. The apparent inhibitory pK for this site was near 7.2. Treatment of the neurons with specific amino acid reagents implicated amino, but no histidyl or sulfhydryl, residues in divalent cation binding.


Author(s):  
Jan Nisar ◽  
Sohaib Hassan ◽  
Muhammad Iftikhar Khan ◽  
Munawar Iqbal ◽  
Arif Nazir ◽  
...  

AbstractThis study focuses on the synthesis of iron molybdate [Fe2(MoO4)3] nanoparticles (NPs) using simple co-precipitation process. The catalyst synthesized was characterized by advanced instrumental techniques such as XRD, SEM, EDX, TGA and FTIR, which confirmed the successful synthesis of NPs. Organic compound Rhodamine B (Rh. B) dye was selected for photo-degradation due to its complex structure and carcinogenic nature. Results exhibited that at neutral pH, the synthesized catalyst is highly effective for the degradation of Rh. B. For 20 mg/L initial concentration with an initial pH of 6.7, the degradation efficiency of Rh. B reaches 98  % within 180 min. Furthermore, the solution pH (1 to 11) affects the catalytic activity. This indicates that at neutral and/or alkaline pH, the usage of iron molybdate overwhelms the efficiency of Fenton-like reaction. It has been observed that Fe2(MoO4)3 showed excellent stability as after recycling it for 9 times its performance remained effective. Based on these data, the synthesized catalyst could be conveniently employed for degradation of toxic pollutants.


Background: Development of new pharmacological forms able to increase the therapeutic effectiveness of already known drugs, to reduce side effects, and to increase the comfort of treatment for the patient is an actual task of modern medicine and pharmacy. To solve the problem, one of the most promising directions in this field is the use of various nanomaterials, among which in recent years the main attention was drawn to nanomaterials based on rare earth elements (REEs). At the same time, the question of the relation between the biological activity of nanomaterials and their physical and chemical properties, as well as the features of interaction with microenvironments in biosystems, remain controversial. Objectives: Estimation of the aggregation stability of REE-based nanoparticles (NPs) in incubation media of different compositions and of the role of certain factors in stabilizing NPs in the biological microenvironment. Materials and methods: Aggregation stability of GdYVO4:Eu3+, LaVO4: Eu3+, CeO2, GdVO4:Eu3+ NPs was studied using dynamic and electrophoretic light scattering techniques. NPs were incubated in 5% glucose or buffers: 50 mM Tris buffer (with different pH within of physiological values); Igla МЕМ medium; Krebs-Ringer buffer pH 7.4; HBSS-buffer (HEPES-buffered saline-solution) pH 7.4, in the absence or presence of 0.2% BSA, for 30 minutes and 24 hours. The effect of oxidized and reduced glutathione on the stability of solutions of NPs in Tris buffer at various pH values was also determined. Results: The results have shown that in contrast to the stabilizing effect of 5% glucose solution significant aggregation of NPs is observed in saline systems. The highest degree of aggregation was observed in the Igla МЕМ and Krebs-Ringer buffer environment. Addition of 0.2% of albumin to all media prevented aggregation. Interaction of immunoglobulin with NPs leads to increase in hydrodynamic diameter, especially for some types of NPs, already at the smallest of the used protein concentrations. Oxidized but not recovered glutathione promoted aggregation of all types of orthovanadate NPs in acidic medium (Tris buffer pH=6.7). Conclusions: The aggregative stability of NPs in the salt media increases significantly in the presence of serum albumin due to changes in the ratio of the electrostatic and steric components of the interaction of NPs with the microenvironment.


Author(s):  
J. J. Lian ◽  
M. Yang ◽  
H. L. Wang ◽  
Y. Zhong ◽  
B. Chen ◽  
...  

Abstract The overall goal of this study is to investigate the effect of sulfidated nanoscale zerovalent iron (S-nZVI) on the removal of hexavalent molybdate (MoO42-) under different aquatic chemistry conditions. Surface analysis suggests that Mo(VI) is removed mainly by adsorption and co-precipitation onto the surface of S-nZVI and a small amount of Mo(VI) can be reduced to Mo(V) species. The results of batch tests show that Mo(VI) removal by S-nZVI are well described with the pseudo-second order adsorption model. The removal rate increases with a decrease in solution pH (4.0–9.0) and significantly affected by the S/Fe ratio of S-nZVI with the optimal S/Fe ratio of 0.5. The presence of anions WO42- or CrO42- can reduce the Mo(VI) removal, which is likely due to that they compete for adsorption sites on the solid surfaces. The divalent cations Ni2+, Cu2+ and Co2+ also inhibit the removal of Mo(VI) whereas Zn2+, Ca2+ and Mg2+ enhance it. After aged for 35 d in water, S-nZVI still exhibits high reactivity towards Mo(VI) removal (57.39%). The study demonstrate that S-nZVI can be used as an environmentally friendly material for effectively removing Mo(VI) from contaminated water.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Pia Montanucci ◽  
Silvia Terenzi ◽  
Claudio Santi ◽  
Ilaria Pennoni ◽  
Vittorio Bini ◽  
...  

Alginate-based microencapsulation of live cells may offer the opportunity to treat chronic and degenerative disorders. So far, a thorough assessment of physical-chemical behavior of alginate-based microbeads remains cloudy. A disputed issue is which divalent cation to choose for a high performing alginate gelling process. Having selected, in our system, high mannuronic (M) enriched alginates, we studied different gelling cations and their combinations to determine their eventual influence on physical-chemical properties of the final microcapsules preparation,in vitroandin vivo. We have shown that used of ultrapure alginate allows for high biocompatibility of the formed microcapsules, regardless of gelation agents, while use of different gelling cations is associated with corresponding variable effects on the capsules’ basic architecture, as originally reported in this work. However, only the final application which the capsules are destined to will ultimately guide the selection of the ideal, specific gelling divalent cations, since in principle there are no capsules that are better than others.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1742
Author(s):  
Fatimah Mohammed Alzahrani ◽  
Norah Salem Alsaiari ◽  
Khadijah Mohammedsaleh Katubi ◽  
Abdelfattah Amari ◽  
Faouzi Ben Rebah ◽  
...  

A magnetic polymer-based nanocomposite was fabricated by the modification of an Fe3O4/SiO2 magnetic composite with polypyrrole (PPy) via co-precipitation polymerization to form PPy/Fe3O4/SiO2 for the removal of Congo red dye (CR) and hexavalent chromium Cr(VI) ions from water. The nanocomposite was characterized using various techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), vibration sample magnetometer, and thermogravimetric analysis (TGA). The results confirm the successful fabrication of the nanocomposite in the size of nanometers. The effect of different conditions such as the contact time, adsorbent dosage, solution pH, and initial concentration on the adsorption process was investigated. The adsorption isotherm suggested monolayer adsorption of both contaminants over the PPy/Fe3O4/SiO2 nanocomposite following a Langmuir isotherm, with maximum adsorption of 361 and 298 mg.g−1 for CR dye and Cr(VI), respectively. Furthermore, the effect of water type on the adsorption process was examined, indicating the applicability of the PPy/Fe3O4/SiO2 nanocomposite for real sample treatment. Interestingly, the reusability of the nanocomposite for the removal of the studied contaminants was investigated with good results even after six successive cycles. All results make this nanocomposite a promising material for water treatment.


1997 ◽  
Vol 43 (11) ◽  
pp. 1005-1010 ◽  
Author(s):  
Kien Trung Nguyen ◽  
Lieu Thi Nguyen ◽  
Jan Kopecký ◽  
Vladislav Běhal

Glutamate dehydrogenase is an enzyme responsible for ammonium assimilation and glutamate catabolism in organisms. The tylosin producer Streptomyces fradiae possesses both NADP- and NAD-dependent glutamate dehydrogenases. The latter enzyme was purified 498-fold with a 7.5% recovery by a six-step protocol. The enzyme is composed of two subunits, each of Mr 47 000, and could form active aggregates of four or eight subunits. Its activity was inactivated by alkaline pH or temperatures of −20 °C or above 40 °C. Activities assayed in the direction of oxidative deamination and reductive amination were optimal at pH 9.2 and 8.8, respectively, and at temperatures of 30–35 °C. No activity was found when NAD(H) was replaced with NADP(H). The Km values were 32.2 mM for L-glutamate, 0.3 mM for NAD+, 3.4 mM for 2-ketoglutarate, 14.2 mM for NH4+, and 0.05 mM for NADH. Deamination activity was partially inhibited by adenyl nucleotides and several divalent cations; amination activity was not affected by the nucleotides but significantly inhibited by Cu2+ or Ni2+.Key words: Streptomyces fradiae, NAD-dependent glutamate dehydrogenase, purification, properties.


2003 ◽  
Vol 47 (1) ◽  
pp. 41-48 ◽  
Author(s):  
J. Duan ◽  
N.J.D. Graham ◽  
F. Wilson

The coagulation of a model seawater-humic acid solution with a hydrolysis metal salt (FeCl3) has been studied by monitoring floc size, solution pH, and zeta potential. The kinetic features of the orthokinetic coagulation have been demonstrated in relation to coagulant dosages, solution pH and zeta potential. Humic acid removal and floc charge reduction increased with coagulant dosage. Adjusting the solution pH prior to coagulation had a substantial effect on the treatment performance. By pH adjustment to pH 6, the greatest humic acid removal (by coagulation and subsequent membrane filtration) and the largest floc size was achieved at a FeCl3 dosage of 200 mmol l−1. It is believed that the coagulation is characterised by competition between OH- ions and humic acid for ferric ions in the co-precipitation process. In acidic pH, where the concentration of OH- ions is low, humic acid molecules may compete more favourably for bonding sites in the co-precipitation, which leads to a more compact precipitation and a higher overall humic acid removal.


2015 ◽  
Vol 1112 ◽  
pp. 550-554
Author(s):  
M. Zaki Mubarok ◽  
Christian Adi Kurniawan

At the present paper, a process of magnesia (MgO) synthesis from East Java dolomite through hydrochloride acid leaching, precipitation and calcination as well as characteristic of the product is discussed. Results of the experimental works show that the dissolution rate of magnesium and calcium from dolomite in hydrochloride acid solution was very rapid. Complete magnesium extraction was obtained by the leaching test with acid concentration of 1.5 molar, particle size distribution of -325#, solid-liquid ratio 1:20 (g/mL), stirring speed 200 rpm at room temperature after only 10 seconds. Precipitation of Mg(OH)2 by the addition of 20% (v/v) CaO slurry into pregnant leach solution resulted in 97.5% Mg precipitation after 1 minute. Solution pH must be maintained at a level of 10-10.5 by adjusting CaO addition in order to minimize calcium co-precipitation and to obtain high purity of Mg(OH)2 precipitate. Calcinations of Mg(OH)2 were performed at temperature range of 550-800°C in which 99% of crystal water removal took place after 5 minute at temperature of 800°C. Lower temperature requires longer time of crystalline water removal from Mg(OH)2. XRF analysis showed MgO purity of 88% with the main impurities of calcium and chloride. XRD analysis detected the presences of calcium as calcite (CaCO3) and portlandite (Ca(OH)2) as impurities in the MgO product. SEM analysis of the MgO powder revealed a nano size of MgO with particle diameter of about 50 nm.


2019 ◽  
pp. 1258-1266 ◽  
Author(s):  
Thiago Henrique Ferreira Matos Castañon ◽  
Boanerges Freire de Aquino ◽  
Edna Maria Bonfim Silva ◽  
Izabel Maria Almeida Lima ◽  
Ana Paula Alves Barreto Damasceno

The objective of this study was to analyze the effect of soil fertilization with sulfur-based fertilizers, sulfate and elemental sulfur forms on biomass production, nutrient characteristics of sorghum and soil chemical properties. The experiment was carried out in a 4 x 4 factorial scheme (four sulfur sources: single superphosphate, agricultural gypsum, elemental sulfur powder and elemental sulfur granulated with bentonite, and four sulfur doses: 0, 40, 80, 120 mgdm-3) using four replications in a completely randomized design, being cultivated in pots under greenhouse conditions. The sorghum was cultivated for a period of 51 days after emergence of the seedlings. The shoot dry mass, shoot macronutrients content, root and soil and pH of the soil were evaluated. There were interactions between sources and sulfur doses in the variables such as shoot dry mass, sulfur in the root, sulfur and calcium in the soil. Elemental sulfur (granulate) showed lower concentrations of phosphorus, sulfur and N:S ratio in the shoot. The concentrations of potassium, calcium and magnesium did not show significant differences, both for the shoot and the root. The pH of the soil was reduced depending on the sources and doses of elemental sulfur. The sources and doses of sulfur did not influence the levels of phosphorus, potassium, and magnesium in the soil. The elemental sulfur in the form of powder is the best source of sulfur for forage sorghum cultivated in soil with alkaline pH.


Sign in / Sign up

Export Citation Format

Share Document