Hetero-structured Iron Molybdate Nanoparticles: Synthesis, Characterization and Photocatalytic Application

Author(s):  
Jan Nisar ◽  
Sohaib Hassan ◽  
Muhammad Iftikhar Khan ◽  
Munawar Iqbal ◽  
Arif Nazir ◽  
...  

AbstractThis study focuses on the synthesis of iron molybdate [Fe2(MoO4)3] nanoparticles (NPs) using simple co-precipitation process. The catalyst synthesized was characterized by advanced instrumental techniques such as XRD, SEM, EDX, TGA and FTIR, which confirmed the successful synthesis of NPs. Organic compound Rhodamine B (Rh. B) dye was selected for photo-degradation due to its complex structure and carcinogenic nature. Results exhibited that at neutral pH, the synthesized catalyst is highly effective for the degradation of Rh. B. For 20 mg/L initial concentration with an initial pH of 6.7, the degradation efficiency of Rh. B reaches 98  % within 180 min. Furthermore, the solution pH (1 to 11) affects the catalytic activity. This indicates that at neutral and/or alkaline pH, the usage of iron molybdate overwhelms the efficiency of Fenton-like reaction. It has been observed that Fe2(MoO4)3 showed excellent stability as after recycling it for 9 times its performance remained effective. Based on these data, the synthesized catalyst could be conveniently employed for degradation of toxic pollutants.

2003 ◽  
Vol 47 (1) ◽  
pp. 41-48 ◽  
Author(s):  
J. Duan ◽  
N.J.D. Graham ◽  
F. Wilson

The coagulation of a model seawater-humic acid solution with a hydrolysis metal salt (FeCl3) has been studied by monitoring floc size, solution pH, and zeta potential. The kinetic features of the orthokinetic coagulation have been demonstrated in relation to coagulant dosages, solution pH and zeta potential. Humic acid removal and floc charge reduction increased with coagulant dosage. Adjusting the solution pH prior to coagulation had a substantial effect on the treatment performance. By pH adjustment to pH 6, the greatest humic acid removal (by coagulation and subsequent membrane filtration) and the largest floc size was achieved at a FeCl3 dosage of 200 mmol l−1. It is believed that the coagulation is characterised by competition between OH- ions and humic acid for ferric ions in the co-precipitation process. In acidic pH, where the concentration of OH- ions is low, humic acid molecules may compete more favourably for bonding sites in the co-precipitation, which leads to a more compact precipitation and a higher overall humic acid removal.


2020 ◽  
Vol 2 (1) ◽  
pp. 32
Author(s):  
Alamri Rahmah Dhahawi Ahmad ◽  
Saifullahi Shehu Imam ◽  
Wen Da Oh ◽  
Rohana Adnan

In this work, FeM composites consisting of montmorillonite and variable amounts of Fe3O4 were successfully synthesized via a facile co-precipitation process. They were characterized using X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscope (TEM), N2 adsorption-desorption, and Fourier transform infrared spectroscopy (FT-IR) techniques to explain the effect of Fe3O4 content on the physicochemical properties of the Fe3O4-montmorillonite (FeM) composites. The FeM composites were subsequently used as heterogeneous Fenton catalysts to activate green oxidant (H2O2) for the subsequent degradation of ofloxacin (OFL) antibiotic. The efficiency of the FeM composites was studied by varying various parameters of Fe3O4 loading on montmorillonite, catalyst dosage, initial solution pH, initial OFL concentration, different oxidants, H2O2 dosage, reaction temperature, inorganic salts, and solar irradiation. Under the conditions of 0.75 g/L FeM-10, 5 mL/L H2O2, and natural pH, almost 81% of 50 mg/L of OFL was removed within 120 min in the dark, while total organic carbon (TOC) reduction was about 56%. Moreover, the FeM-10 composite maintained high efficiency and was stable even after four continuous cycles, making it a promising candidate in real wastewater remediation.


2019 ◽  
Vol 20 (12) ◽  
pp. 2945 ◽  
Author(s):  
Muhammad Ali Inam ◽  
Rizwan Khan ◽  
Muhammad Akram ◽  
Sarfaraz Khan ◽  
Ick Tae Yeom

The process of coagulation and precipitation affect the fate and mobility of antimony (Sb) species in drinking water. Moreover, the solubility and physico-chemical properties of the precipitates may be affected by the media chemistry. Accordingly, the present study aimed to investigate the removal of Sb(III, V) species by ferric chloride coagulation under various water chemistry influences with a particular focus on the role of the properties of the precipitates. The results indicated that the amount of Sb(III) removed increased with increasing solution pH, showing the insignificant effects of the hydrodynamic diameter (HDD) and ζ-potential of the precipitates. However, no Sb(V) removal occurred at alkaline pH values, while a highly negative ζ-potential and the complete dissolution of precipitates were observed in the aqueous solution. The solution pH was also useful in determining the dominant coagulation mechanisms, such as co-precipitation and adsorption. The Fe solubility substantially affects the Sb removal at a certain pH range, while the HDD of the precipitates plays an insignificant role in Sb removal. The presence of divalent cations brings the ζ-potential of the precipitates close to point of zero charge (pzc), thus enhancing the Sb(V) removal at alkaline pH conditions. Pronounced adverse effects of humic acid were observed on Sb removal, ζ-potential and HDD of the precipitates. In general, this study may provide critical information to a wide group of researchers dealing with environmental protection from heavy metal pollution.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 177
Author(s):  
Alamri Rahmah Dhahawi Ahmad ◽  
Saifullahi Shehu Imam ◽  
Wen Da Oh ◽  
Rohana Adnan

In this work, FeM composites consisting of montmorillonite and variable amounts of Fe3O4 were successfully synthesized via a facile co-precipitation process. They were characterized using X-ray photoelectron spectroscopy (XPS), a field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDX), a transmission electron microscope (TEM), N2 adsorption–desorption, and Fourier transform infrared spectroscopy (FTIR) techniques to explain the effect of Fe3O4 content on the physicochemical properties of the Fe3O4–montmorillonite (FeM) composites. The FeM composites were subsequently used as heterogeneous Fenton catalysts to activate green oxidant (H2O2) for the subsequent degradation of ofloxacin (OFL) antibiotic. The efficiency of the FeM composites was studied by varying various parameters of Fe3O4 loading on montmorillonite, catalyst dosage, initial solution pH, initial OFL concentration, different oxidants, H2O2 dosage, reaction temperature, inorganic salts, and solar irradiation. Under the conditions of 0.75 g/L FeM-10, 5 mL/L H2O2, and natural pH, almost 81% of 50 mg/L of OFL was degraded within 120 min in the dark, while total organic carbon (TOC) reduction was about 56%. Although FeM composites could be a promising heterogeneous catalyst for the activation of H2O2 to degrade organic pollutants, including OFL antibiotic, the FeM-10 composite shows a significant drop in efficiency after five cycles, which indicates that more studies to improve this weakness should be conducted.


2016 ◽  
Vol 74 (2) ◽  
pp. 393-401 ◽  
Author(s):  
Yongchao Li ◽  
Bing Geng ◽  
Xiaoxian Hu ◽  
Bozhi Ren ◽  
Andrew S. Hursthouse

An Fe-Cu binary oxide was fabricated through a simple co-precipitation process, and was used to remove Sb(III) from aqueous solution. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and N2 adsorption–desorption measurements demonstrated that the Fe-Cu binary oxide consisted of poorly ordered ferrihydrite and CuO, and its specific surface area was higher than both iron oxide and copper oxide. A comparative test indicated that Fe/Cu molar ratio of prepared binary oxide greatly influenced Sb(III) removal and the optimum Fe/Cu molar ratio was about 3/1. Moreover, a maximum adsorption capacity of 209.23 mg Sb(III)/g Fe-Cu binary oxide at pH 5.0 was obtained. The removal of Sb(III) by Fe-Cu binary oxide followed the Freundlich adsorption isotherm and the pseudo-second-order kinetics in the batch study. The removal of Sb(III) was not sensitive to solution pH. In addition, the release of Fe and Cu ions to water was very low when the pH was greater than 6.0. X-ray photoelectron spectroscopy analysis confirmed that the Sb(III) adsorbed on the surface was not oxidized to Sb(V).


2011 ◽  
Author(s):  
Darminto ◽  
Machida N. Cholishoh ◽  
Feby A. Perdana ◽  
Malik A. Baqiya ◽  
Mashuri ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1742
Author(s):  
Fatimah Mohammed Alzahrani ◽  
Norah Salem Alsaiari ◽  
Khadijah Mohammedsaleh Katubi ◽  
Abdelfattah Amari ◽  
Faouzi Ben Rebah ◽  
...  

A magnetic polymer-based nanocomposite was fabricated by the modification of an Fe3O4/SiO2 magnetic composite with polypyrrole (PPy) via co-precipitation polymerization to form PPy/Fe3O4/SiO2 for the removal of Congo red dye (CR) and hexavalent chromium Cr(VI) ions from water. The nanocomposite was characterized using various techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), vibration sample magnetometer, and thermogravimetric analysis (TGA). The results confirm the successful fabrication of the nanocomposite in the size of nanometers. The effect of different conditions such as the contact time, adsorbent dosage, solution pH, and initial concentration on the adsorption process was investigated. The adsorption isotherm suggested monolayer adsorption of both contaminants over the PPy/Fe3O4/SiO2 nanocomposite following a Langmuir isotherm, with maximum adsorption of 361 and 298 mg.g−1 for CR dye and Cr(VI), respectively. Furthermore, the effect of water type on the adsorption process was examined, indicating the applicability of the PPy/Fe3O4/SiO2 nanocomposite for real sample treatment. Interestingly, the reusability of the nanocomposite for the removal of the studied contaminants was investigated with good results even after six successive cycles. All results make this nanocomposite a promising material for water treatment.


2009 ◽  
Vol 79-82 ◽  
pp. 505-508
Author(s):  
Li Li ◽  
H. Zhao ◽  
Wei Wang ◽  
F.F. Nie

The magnetic Fe3O4 nanoparticles had been synthesized by co-precipitation process and surface treatment by silane coupling agent (KH570). The magnetic Fe3O4/PMMA nanocomposite films were prepared by blend method, and the chemical structure, mechanical properties, surface morphology and the biocompatibility of the nanocomposite films were studied in this work. The magnetic Fe3O4 nanoparticles were well dispersed in the Fe3O4/PMMA nanocomposite films. The strength of the nanocomposite films, as well as the strain, decreased first and then increased with the increasing of the nanoparticles. The hemolytic ratio indicated that the nanocomposite films had a better blood compatibility.


2017 ◽  
Vol 75 (6) ◽  
pp. 1500-1511 ◽  
Author(s):  
Shengjiong Yang ◽  
Pengkang Jin ◽  
Xiaochang C. Wang ◽  
Qionghua Zhang ◽  
Xiaotian Chen

In this study, a granular material (GM) developed from building waste was used for phosphate removal from phosphorus-containing wastewater. Batch experiments were executed to investigate the phosphate removal capacity of this material. The mechanism of removal proved to be a chemical precipitation process. The characteristics of the material and resulting precipitates, the kinetics of the precipitation and Ca2+ liberation processes, and the effects of dosage and pH were investigated. The phosphate precipitation and Ca2+ liberation processes were both well described by a pseudo-second-order kinetic model. A maximum precipitation capacity of 0.51 ± 0.06 mg g−1 and a liberation capacity of 6.79 ± 0.77 mg g−1 were measured under the experimental conditions. The processes reached equilibrium in 60 min. The initial solution pH strongly affected phosphate removal under extreme conditions (pH <4 and pH >10). The precipitates comprised hydroxyapatite and brushite. This novel GM can be considered a promising material for phosphate removal from wastewater.


Sign in / Sign up

Export Citation Format

Share Document