scholarly journals The Role of Endothelial Dysfunction in Peripheral Blood Nerve Barrier: Molecular Mechanisms and Pathophysiological Implications

2019 ◽  
Vol 20 (12) ◽  
pp. 3022 ◽  
Author(s):  
Jessica Maiuolo ◽  
Micaela Gliozzi ◽  
Vincenzo Musolino ◽  
Cristina Carresi ◽  
Saverio Nucera ◽  
...  

The exchange of solutes between the blood and the nerve tissue is mediated by specific and high selective barriers in order to ensure the integrity of the different compartments of the nervous system. At peripheral level, this function is maintained by the Blood Nerve Barrier (BNB) that, in the presence, of specific stressor stimuli can be damaged causing the onset of neurodegenerative processes. An essential component of BNB is represented by the endothelial cells surrounding the sub-structures of peripheral nerves and increasing evidence suggests that endothelial dysfunction can be considered a leading cause of the nerve degeneration. The purpose of this review is to highlight the main mechanisms involved in the impairment of endothelial cells in specific diseases associated with peripheral nerve damage, such as diabetic neuropathy, erectile dysfunction and inflammation of the sciatic nerve.

2016 ◽  
Vol 116 (2) ◽  
pp. 223-246 ◽  
Author(s):  
N. Suganya ◽  
E. Bhakkiyalakshmi ◽  
D. V. L. Sarada ◽  
K. M. Ramkumar

AbstractThe endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.


2018 ◽  
Vol 95 (11) ◽  
pp. 965-970
Author(s):  
V. I. Podzolkov ◽  
T. A. Safronova ◽  
Dinara U. Natkina

The results of numerous studies of recent decades confirm the crucial role of vascular endothelium in regulating vascular homeostasis. A plethora of recent studies have shed light on the clinical significance of endothelial dysfunction in essential hypertension. Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase inhibitor. At present, it is considered as a generally recognized marker of endothelial dysfunction by most researchers. In vitro experiments showed that ADMA inhibits endothelium-dependent arterial relaxation, increases the level of indicators characterizing the degree of oxidative stress in endothelial cells, enhances the synthesis of the superoxide anion radical by endothelial cells. The molecular mechanisms described above, activated with an increase in the concentration of ADMA, cause various disturbances in the function of the cardiovascular system, which gave grounds to consider the level of ADMA as a criterion and risk factor for the development of cardiovascular diseases. Thus, ADMA plays a key role in the development and progression of CVD associated with a spectrum of diseases and pathological conditions characterized by a disturbance in NO production. Despite clinical and experimental confirmation of the relationship between the increase in ADMA in plasma and the development of cardiovascular events, the unambiguous etiopathogenetic role of ADMA in CVD requires further research. In order to accurately answer the question of whether ADMA is an etiological factor or a biological marker of CVD, additional analysis is needed to study the biochemical, genetic and pharmacological aspects of ADMA metabolism, the results of which are presented in this article.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samir Sissaoui ◽  
Stuart Egginton ◽  
Ling Ting ◽  
Asif Ahmed ◽  
Peter W. Hewett

AbstractPlacenta growth factor (PlGF) is a pro-inflammatory angiogenic mediator that promotes many pathologies including diabetic complications and atherosclerosis. Widespread endothelial dysfunction precedes the onset of these conditions. As very little is known of the mechanism(s) controlling PlGF expression in pathology we investigated the role of hyperglycaemia in the regulation of PlGF production in endothelial cells. Hyperglycaemia stimulated PlGF secretion in cultured primary endothelial cells, which was suppressed by IGF-1-mediated PI3K/Akt activation. Inhibition of PI3K activity resulted in significant PlGF mRNA up-regulation and protein secretion. Similarly, loss or inhibition of Akt activity significantly increased basal PlGF expression and prevented any further PlGF secretion in hyperglycaemia. Conversely, constitutive Akt activation blocked PlGF secretion irrespective of upstream PI3K activity demonstrating that Akt is a central regulator of PlGF expression. Knock-down of the Forkhead box O-1 (FOXO1) transcription factor, which is negatively regulated by Akt, suppressed both basal and hyperglycaemia-induced PlGF secretion, whilst FOXO1 gain-of-function up-regulated PlGF in vitro and in vivo. FOXO1 association to a FOXO binding sequence identified in the PlGF promoter also increased in hyperglycaemia. This study identifies the PI3K/Akt/FOXO1 signalling axis as a key regulator of PlGF expression and unifying pathway by which PlGF may contribute to common disorders characterised by endothelial dysfunction, providing a target for therapy.


Author(s):  
Liping Su ◽  
Xiaocen Kong ◽  
Sze Jie Loo ◽  
Yu Gao ◽  
Jean-Paul Kovalik ◽  
...  

Induced pluripotent stem cells derived cells (iPSCs) not only can be used for personalized cell transfer therapy, but also can be used for modeling diseases for drug screening and discovery in vitro. Although prior studies have characterized the function of rodent iPSCs derived endothelial cells (ECs) in diabetes or metabolic syndrome, feature phenotypes are largely unknown in hiPSC-ECs from patients with diabetes. Here, we used hiPSC lines from patients with type 2 diabetes mellitus (T2DM) and differentiated them into ECs (dia-hiPSC-ECs). We found that dia-hiPSC-ECs had disrupted glycine homeostasis, increased senescence, and impaired mitochondrial function and angiogenic potential as compared with healthy hiPSC-ECs. These signature phenotypes will be helpful to establish dia-hiPSC-ECs as models of endothelial dysfunction for understanding molecular mechanisms of disease and for identifying and testing new targets for the treatment of endothelial dysfunction in diabetes.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Sindy Giebe ◽  
Coy Brunssen ◽  
Melanie Brux ◽  
Natalia Cockcroft ◽  
Katherine Hewitt ◽  
...  

Endothelial dysfunction is one of the first steps in the development of atherosclerosis. This proinflammatory phenotype is associated with decreased bioavailability of nitric oxide and a corresponding expression profile in the endothelial cells. Tobacco smoking promotes development of atherosclerotic plaques and local hemodynamic forces are key stimuli in this process. Low laminar flow is involved in the development of an unstable plaque phenotype, while high laminar flow has atheroprotective role. The molecular mechanisms controlling plaque stability in response to tobacco smoking remain largely unknown so far. Therefore, we exposed human endothelial cells to cigarette smoke extract (CSEaq) under disturbed flow conditions. Primary human endothelial cells were stimulated with increasing dosages of CSEaq for 24h. Cell viability was reduced by CSEaq in a dose-dependent manner. The impact of specific flow conditions and different doses of CSEaq on the expression of atherosclerosis-related genes was investigated using a cone-and-plate viscometer. High laminar flow induced elongation of endothelial cells in the direction of flow, increased eNOS expression and NO release in a time-dependent manner. This increase was inhibited by CSEaq. Low laminar flow showed no effect on eNOS expression and NO release. The NRF2 antioxidative defense system was also induced by high laminar flow. NRF2 and NRF2 target genes HMOX1 and NQO1 were strongly activated by CSEaq. Furthermore, we monitored the expression of proinflammatory genes. CSEaq strongly induced adhesion molecule ICAM-1. Interestingly, VCAM-1 was unaffected by CSEaq. Induction of endothelial NADPH oxidase isoform 4 by CSEaq was prevented by high laminar flow. Catalase expression was not affected by flow and CSEaq, whereas CSEaq transiently increased SOD1 expression. Endothelial wound healing was improved by atheroprotective high laminar flow. Low flow did not affect wound healing. Furthermore, high laminar flow decreased adhesion of monocytes to endothelial cells, compared to low flow. We suggest novel molecular mechanisms how tobacco smoking promotes the development of endothelial dysfunction. This can contribute to the formation of an unstable atherosclerotic plaque phenotype.


Psychiatry ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 125-134
Author(s):  
E. F. Vasilyeva ◽  
O. S. Brusov

Background: at present, the important role of the monocyte-macrophage link of immunity in the pathogenesis of mental diseases has been determined. In the first and second parts of our review, the cellular and molecular mechanisms of activation of monocytes/macrophages, which secreting proinflammatory CD16 receptors, cytokines, chemokines and receptors to them, in the development of systemic immune inflammation in the pathogenesis of somatic diseases and mental disorders, including schizophrenia, bipolar affective disorder (BAD) and depression were analyzed. The association of high levels of proinflammatory activity of monocytes/macrophages in patients with mental disorders with somatic comorbidity, including immune system diseases, is shown. It is known that proinflammatory monocytes of peripheral blood, as a result of violation of the integrity of the hematoencephalic barrier can migrate to the central nervous system and activate the resident brain cells — microglia, causing its activation. Activation of microglia can lead to the development of neuroinammation and neurodegenerative processes in the brain and, as a result, to cognitive disorders. The aim of review: to analyze the results of the main scientific studies concerning the role of cellular and molecular mechanisms of peripheral blood monocytes interaction with microglial cells and platelets in the development of neuroinflammation in the pathogenesis of mental disorders, including Alzheimer’s disease (AD). Material and methods: keywords “mental disorders, AD, proinflammatory monocytes, microglia, neuroinflammation, cytokines, chemokines, cell adhesion molecules, platelets, microvesicles” were used to search for articles of domestic and foreign authors published over the past 30 years in the databases PubMed, eLibrary, Science Direct and EMBASE. Conclusion: this review analyzes the results of studies which show that monocytes/macrophages and microglia have similar gene expression profiles in schizophrenia, BAD, depression, and AD and also perform similar functions: phagocytosis and inflammatory responses. Monocytes recruited to the central nervous system stimulate the increased production of proinflammatory cytokines IL-1, IL-6, tumor necrosis factor alpha (TNF-α), chemokines, for example, MCP-1 (Monocyte chemotactic protein-1) by microglial cells. This promotes the recruitment of microglial cells to the sites of neuronal damage, and also enhances the formation of the brain protein beta-amyloid (Aβ). The results of modern studies are presented, indicating that platelets are involved in systemic inflammatory reactions, where they interact with monocytes to form monocyte-platelet aggregates (MTA), which induce the activation of monocytes with a pro inflammatory phenotype. In the last decade, it has been established that activated platelets and other cells of the immune system, including monocytes, detached microvesicles (MV) from the membrane. It has been shown that MV are involved as messengers in the transport of biologically active lipids, cytokines, complement, and other molecules that can cause exacerbation of systemic inflammatory reactions. The presented review allows us to expand our knowledge about the cellular and molecular aspects of the interaction of monocytes/macrophages with microglial cells and platelets in the development of neuroinflammation and cognitive decline in the pathogenesis of mental diseases and in AD, and also helps in the search for specific biomarkers of the clinical severity of mental disorder in patients and the prospects for their response to treatment.


2015 ◽  
Author(s):  
◽  
Shanyan Chen

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Stroke ranks fourth among all causes of death, and acute ischemic stroke is the most common form. The neurovascular unit (NVU) describes a basic functional structure in the brain and is primarily composed of endothelial cells, pericytes, astrocytes, microglia and neurons. The dynamic structure of the NVU is highly regulated due to interactions between different cells and extracellular matrix (ECM) components. Proteolysis of the ECM by matrix metalloproteinases (MMPs), especially MMP-9, plays an important role in the pathophysiology of cerebral ischemia and administration of tissue plasminogen activator (tPA). The activation of gelatinases (MMP-2/9) is considered a key mechanism involved in the impairment of NVU. The overall goal of this research project is to examine the role of MMP-9 in the neurovascular impairment after ischemic stroke in mice. In this project, we implemented a new strategy using gelatinase-activatable cell-penetrating peptides (ACPPs) tagged with fluorescence and/or gadolinium-based contrast agents to investigate proteolysis of gelatinases as surrogate markers of neurovascular integrity. We presented evidence that the combination of a sensitive fluorescent chromatophore and MRI contrast enhancement agent can be used to monitor gelatinase activity and its distribution in cultured neurons as well as in mice after focal cerebral ischemia. Detection of the activity of gelatinases in vivo using ACPPs could provide insights into the underlying mechanism for gelatinase proteolysis that mediate ischemia-related neurovascular impairment. We also applied a two-dimensional (2D) gelatin zymography technique that combines isoelectric focusing (IEF) with zymographic electrophoresis. We demonstrated that the 2D zymography approach can improve separation of different isoforms of gelatinases in both in vitro and in vivo conditions. 2D zymography is an effective method to separate posttranslational modification isoforms of gelatinases and to identify modifications that regulate their enzymatic activity in acute brain injuries. In work that follows, we used a fibrin-rich blood clot to occlude the middle cerebral artery (MCA) in mice as a model to represent the critical thromboembolic features of ischemic stroke in humans. In this study, we evaluated effects of SB-3CT, a mechanism-based inhibitor selective for gelatinases. We demonstrated MMP-9 activation and neurovasculature impairment in this stroke model, and showed the ability of SB-3CT to inhibit MMP-9 activity in vivo, which in turn resulted in maintenance of laminin, antagonism of pericyte contraction and loss, preservation of laminin-positive pericytes and endothelial cells, and thus rescuing neurons from apoptosis and preventing intracerebral hemorrhage. We further demonstrated that SB-3CT/tPA combined treatment could attenuate MMP-9 -- mediated degradation of endothelial laminin, impairment of endothelial cells, and decrease of caveolae -- mediated transcytosis. Early inhibition of MMP-9 proteolysis by SB-3CT decreased brain damage, reduced BBB disruption, and prevented hemorrhagic transformation after delayed tPA treatment. Therefore usage of SB-3CT will be helpful in accessing combination therapy with tPA in ischemic stroke. Results from these studies indicate the important role of MMP-9 in cerebral ischemia and thus the need for further studies to explore the molecular mechanisms underlying its activation and regulation. Results further demonstrated that the combined use of MMP-9 inhibitor with tPA may extend tPA therapeutic window for mitigating stroke damage.


2013 ◽  
Vol 59 (8) ◽  
pp. 1166-1174 ◽  
Author(s):  
Fina Lovren ◽  
Subodh Verma

BACKGROUND Endothelial dysfunction is an early event in the development and progression of a wide range of cardiovascular diseases. Various human studies have identified that measures of endothelial dysfunction may offer prognostic information with respect to vascular events. Microparticles (MPs) are a heterogeneous population of small membrane fragments shed from various cell types. The endothelium is one of the primary targets of circulating MPs, and MPs isolated from blood have been considered biomarkers of vascular injury and inflammation. CONTENT This review summarizes current knowledge of the potential functional role of circulating MPs in promoting endothelial dysfunction. Cells exposed to different stimuli such as shear stress, physiological agonists, proapoptotic stimulation, or damage release MPs, which contribute to endothelial dysfunction and the development of cardiovascular diseases. Numerous studies indicate that MPs may trigger endothelial dysfunction by disrupting production of nitric oxide release from vascular endothelial cells and subsequently modifying vascular tone. Circulating MPs affect both proinflammatory and proatherosclerotic processes in endothelial cells. In addition, MPs can promote coagulation and inflammation or alter angiogenesis and apoptosis in endothelial cells. SUMMARY MPs play an important role in promoting endothelial dysfunction and may prove to be true biomarkers of disease state and progression.


2020 ◽  
Vol 21 (11) ◽  
pp. 4045 ◽  
Author(s):  
Bruno Tilocca ◽  
Luisa Pieroni ◽  
Alessio Soggiu ◽  
Domenico Britti ◽  
Luigi Bonizzi ◽  
...  

Recent advances in the field of meta-omics sciences and related bioinformatics tools have allowed a comprehensive investigation of human-associated microbiota and its contribution to achieving and maintaining the homeostatic balance. Bioactive compounds from the microbial community harboring the human gut are involved in a finely tuned network of interconnections with the host, orchestrating a wide variety of physiological processes. These includes the bi-directional crosstalk between the central nervous system, the enteric nervous system, and the gastrointestinal tract (i.e., gut–brain axis). The increasing accumulation of evidence suggest a pivotal role of the composition and activity of the gut microbiota in neurodegeneration. In the present review we aim to provide an overview of the state-of-the-art of meta-omics sciences including metagenomics for the study of microbial genomes and taxa strains, metatranscriptomics for gene expression, metaproteomics and metabolomics to identify and/or quantify microbial proteins and metabolites, respectively. The potential and limitations of each discipline were highlighted, as well as the advantages of an integrated approach (multi-omics) to predict microbial functions and molecular mechanisms related to human diseases. Particular emphasis is given to the latest results obtained with these approaches in an attempt to elucidate the link between the gut microbiota and the most common neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS).


Sign in / Sign up

Export Citation Format

Share Document