scholarly journals Chitosan Ameliorates DSS-Induced Ulcerative Colitis Mice by Enhancing Intestinal Barrier Function and Improving Microflora

2019 ◽  
Vol 20 (22) ◽  
pp. 5751 ◽  
Author(s):  
Jia Wang ◽  
Cuili Zhang ◽  
Chunmei Guo ◽  
Xinli Li

Ulcerative colitis (UC) has been identified as one of the inflammatory diseases. Intestinal mucosal barrier function and microflora play major roles in UC. Modified-chitosan products have been consumed as effective and safe drugs to treat UC. The present work aimed to investigate the effect of chitosan (CS) on intestinal microflora and intestinal barrier function in dextran sulfate sodium (DSS)-induced UC mice and to explore the underlying mechanisms. KM (Kunming) mice received water/CS (250, 150 mg/kg) for 5 days, and then received 3% DSS for 5 days to induce UC. Subsequently, CS (250, 150 mg/kg) was administered daily for 5 days. Clinical signs, body weight, colon length, and histological changes were recorded. Alterations of intestinal microflora were analyzed by PCR-DGGE, expressions of TNF-α and tight junction proteins were detected by Western blotting. CS showed a significant effect against UC by the increased body weight and colon length, decreased DAI (disease activity index) and histological injury scores, and alleviated histopathological changes. CS reduced the expression of TNF-α, promoted the expressions of tight junction proteins such as claudin-1, occludin, and ZO-1 to maintain the intestinal mucosal barrier function for attenuating UC in mice. Furthermore, Parabacteroides, Blautia, Lactobacillus, and Prevotella were dominant organisms in the intestinal tract. Blautia and Lactobacillus decreased with DSS treatment, but increased obviously with CS treatment. This is the first time that the effect of original CS against UC in mice has been reported and it is through promoting dominant intestinal microflora such as Blautia, mitigating intestinal microflora dysbiosis, and regulating the expressions of TNF-α, claudin-1, occludin, and ZO-1. CS can be developed as an effective food and health care product for the prevention and treatment of UC.

Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 896 ◽  
Author(s):  
Binning Wu ◽  
Rohil Bhatnagar ◽  
Vijaya V. Indukuri ◽  
Shara Chopra ◽  
Kylie March ◽  
...  

Inflammatory bowel disease (IBD), a chronic intestinal inflammatory condition, awaits safe and effective preventive strategies. Naturally occurring flavonoid compounds are promising therapeutic candidates against IBD due to their great antioxidant potential and ability to reduce inflammation and improve immune signaling mediators in the gut. In this study, we utilized two maize near-isogenic lines flavan-4-ols-containing P1-rr (F+) and flavan-4-ols-lacking p1-ww (F−) to investigate the anti-inflammatory property of flavan-4-ols against carboxymethylcellulose (CMC)-induced low-grade colonic inflammation. C57BL/6 mice were exposed to either 1% CMC (w/v) or water for a total of 15 weeks. After week six, mice on CMC treatment were divided into four groups. One group continued on the control diet. The second and third groups were supplemented with F+ at 15% or 25% (w/w). The fourth group received diet supplemented with F− at 15%. Here we report that mice consuming F+(15) and F+(25) alleviated CMC-induced increase in epididymal fat-pad, colon histology score, pro-inflammatory cytokine interleukin 6 expression and intestinal permeability compared to mice fed with control diet and F−(15). F+(15) and F+(25) significantly enhanced mucus thickness in CMC exposed mice (p < 0.05). These data collectively demonstrated the protective effect of flavan-4-ol against colonic inflammation by restoring intestinal barrier function and provide a rationale to breed for flavan-4-ols enriched cultivars for better dietary benefits.


2018 ◽  
Vol 20 (1) ◽  
pp. 20 ◽  
Author(s):  
Haiwei Liang ◽  
Zhaolai Dai ◽  
Jiao Kou ◽  
Kaiji Sun ◽  
Jingqing Chen ◽  
...  

l-Tryptophan (Trp) is known to play an important role in the health of the large intestine. However, a role of dietary Trp in the small-intestinal mucosal barrier and microbiota remains poorly understood. The present study was conducted with weaned piglets to address this issue. Postweaning piglets were fed for 4 weeks a corn- and soybean meal-based diet supplemented with 0 (Control), 0.1, 0.2, or 0.4% Trp. The small-intestinal microbiota and serum amino acids were analyzed by bacterial 16S rRNA gene-based high-throughput sequencing methods and high-performance liquid chromatography, respectively. The mRNA levels for genes involved in host defense and the abundances of tight-junction proteins in jejunum and duodenum were measured by real time-PCR and Western blot techniques, respectively. The concentrations of Trp in the serum of Trp-supplemented piglets increased in a dose-dependent manner. Compared with the control group, dietary supplementation with 0.2–0.4% Trp reduced the abundances of Clostridium sensu stricto and Streptococcus in the jejunum, increased the abundances of Lactobacillus and Clostridium XI (two species of bacteria that can metabolize Trp) in the jejunum, and augmented the concentrations of secretory immunoglobulin A (sIgA) as well as mRNA levels for porcine β-defensins 2 and 3 in jejunal tissues. Moreover, dietary Trp supplementation activated the mammalian target of rapamycin signaling and increased the abundances of tight-junction proteins (zonula occludens (ZO)-1, ZO-3, and claudin-1) in jejunum and duodenum. We suggested that Trp-metabolizing bacteria in the small intestine of weaned pigs primarily mediated the beneficial effects of dietary Trp on its mucosal integrity, health, and function.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xinxin Wang ◽  
Jiayang Wang ◽  
Tianyu Xie ◽  
Shuo Li ◽  
Di Wu ◽  
...  

Objectives. In Crohn’s disease (CD), the mechanisms underlying the regulation by granulocyte-macrophage colony-stimulating factor (GM-CSF) of mucosal barrier function in the ileum are unclear. We analyzed the molecular mechanisms underlying the regulation by GM-CSF of the mucosal barrier function. Methods. We examined the role of GM-CSF in the intestinal barrier function in CD at the molecular-, cellular-, and animal-model levels. Results. Macrophages directly secreted GM-CSF, promoting intestinal epithelial proliferation and inhibiting apoptosis, which maintained intestinal barrier function. Macrophages were absent in NSAID-induced ileitis, causing GM-CSF deficiency, increasing the apoptosis rate, decreasing the proliferation rate, increasing inter- and paracellular permeabilities, decreasing the TJP levels, and reducing the numbers of mesenteric lymph nodes, memory T cells, and regulatory T cells in Csf1op/op transgenic mice. Conclusions. GM-CSF is required for the maintenance of intestinal barrier function. Macrophages directly secrete GM-CSF, promoting intestinal epithelial proliferation and inhibiting apoptosis.


2021 ◽  
Author(s):  
Qingsheng Niu ◽  
Fang Liu ◽  
Jun Zhang ◽  
Xiaojun Yang ◽  
Xiaohong Wang

Abstract The unique features of post–cardiac arrest pathophysiology are often superimposed on the disease or injury, causing the cardiac arrest, as well as underlying comorbidities. Exogenous carbon monoxide (CO) was reported to reduce ischemia-reperfusion injury (IRI). This study aimed to assess the effects of CO releasing molecule-2 (CORM-2) on intestinal mucosal barrier function after cardiopulmonary resuscitation (CPR) in rats. For this purpose, we established a rat model of asphyxiation-induced cardiac arrest and resuscitation to study intestinal IRI, and measured the serum level of intestinal fatty-acid binding protein (I-FABP). The expression levels of claudin-3, occludin, ZO-1, tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and nuclear factor kappa B (NF-κB) p65 were detected by Western blotting. CORM-2 up-regulated the expression levels of tight junction proteins (claudin-3, occludin, and ZO-1) in intestinal mucosa, leading to the reduction of the permeability of intestinal mucosa and reduced the release of proinflammatory cytokines. Besides, the CORM-2 exhibited anti-inflammatory effects by regulating the TNF-α/NF-κB pathway. In conclusion, CORM-2 treatment is clinically significant, preventing intestinal mucosal damage as a result of IRI during CPR.


2018 ◽  
Vol 46 (5) ◽  
pp. 1779-1792 ◽  
Author(s):  
Zhiping Xiao ◽  
Lujie Liu ◽  
Wenjing Tao ◽  
Xun Pei ◽  
Geng Wang ◽  
...  

Background/Aims: The intestinal mucosa forms a physical and metabolic barrier against the diffusion of pathogens, toxins, and allergens from the lumen into the circulatory system. Early weaning, a critical phase in swine production, can compromise intestinal barrier function through mucosal damage and alteration of tight junction integrity Maintenance of intestinal barrier function plays a pivotal role in optimum gastrointestinal health. In this study, we investigated the effects of Clostridium tyrobutyricum (C.t) on intestinal barrier dysfunction induced by lipopolysaccharide (LPS) and the underlying mechanisms involved in intestinal barrier protection. Methods: A Transwell model of IPEC-J2 cells was used to imitate the intestinal barrier. Fluorescence microscopy and flow cytometry were used to evaluate apoptosis. Real-time PCR was used to detect apoptosis-related genes and the downstream genes of the p38/c-Jun N-terminal kinase (JNK) signaling pathways. Western blotting was used to measure the expressions of tight junction proteins and mitogen-activated protein kinases. Results: C.t efficiently maintained trans-epithelium electrical resistance values and intestinal permeability after LPS-induced intestinal barrier disruption. The expressions of tight junction proteins (ZO-1, claudin-1, and occludin) were promoted when IPEC-J2 cells were treated with C.t. Fluorescence imaging and flow cytometry revealed that C.t qualitatively and quantitatively inhibited LPS-induced cell apoptosis. C.t also increased the relative expression of the anti-apoptotic gene Bcl-2 and decreased that of the apoptotic genes Bax and caspase-3/-8. Moreover, the protective effect of C.t on damaged intestinal cell models was associated with suppression of p38 and JNK phosphorylation, negative regulation of the relative expressions of downstream genes including AP-1, ATF-2, ELK-1, and p53, and activation of Stat3 expression. Conclusions: These findings indicate that C.t may promote intestinal integrity, suggesting a novel probiotic effect on intestinal barrier function.


mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Xiao Sun ◽  
Yalei Cui ◽  
Yingying Su ◽  
Zimin Gao ◽  
Xinying Diao ◽  
...  

ABSTRACT Weaning of piglets is accompanied by intestinal inflammation, impaired intestinal barrier function, and intestinal microflora disorder. Regulating intestinal microflora structure can directly or indirectly affect intestinal health and host growth and development. However, whether dietary fiber (DF) affects the inflammatory response and barrier function by affecting the intestinal microflora and its metabolites is unclear. In this study, we investigated the role of intestinal microflora in relieving immune stress and maintaining homeostasis using piglets with lipopolysaccharide (LPS)-induced intestinal injury as a model. DF improved intestinal morphology and barrier function, inhibited the expression of inflammatory signal pathways (Toll-like receptor 2 [TLR2], TLR4, and NF-κB) and proinflammatory cytokines (interleukin 1β [IL-1β], IL-6, and tumor necrosis factor alpha [TNF-α]), and upregulated the expression of barrier-related genes (encoding claudin-1, occludin, and ZO-1). The contents of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and the activity of diamine oxidase in plasma were decreased. Meanwhile, DF had a strong effect on the composition and function of intestinal microflora at different taxonomic levels, the relative abundances of cellulolytic bacteria and anti-inflammatory bacteria were increased, and the concentrations of propionate, butyrate, and total short-chain fatty acids (SCFAs) in intestinal contents were increased. In addition, the correlation analysis also revealed the potential relationship between metabolites and certain intestinal microflora, as well as the relationship between metabolites and intestinal morphology, intestinal gene expression, and plasma cytokine levels. These results indicate that DF improves intestinal barrier function, in part, by altering intestinal microbiota composition and increasing the synthesis of SCFAs, which subsequently alleviate local and systemic inflammation. IMPORTANCE Adding DF to the diet of LPS-challenged piglets alleviated intestinal and systemic inflammation, improved intestinal barrier function, and ultimately alleviated the growth retardation of piglets. In addition, the addition of DF significantly increased the relative abundance of SCFA-producing bacteria and the production of SCFAs. We believe that the improvement of growth performance of piglets with LPS-induced injury can be attributed to the beneficial effects of DF on intestinal microflora and SCFAs, which reduced the inflammatory response in piglets, improving intestinal barrier function and enhancing body health. These research results provide a theoretical basis and guidance for the use of specific fiber sources in the diet to improve intestinal health and growth performance of piglets and thus alleviate weaning stress. Our data also provide insights for studying the role of DF in regulating gastrointestinal function in human infants.


Sign in / Sign up

Export Citation Format

Share Document