scholarly journals 25-Hydroxycholesterol Inhibits Adipogenic Differentiation of C3H10T1/2 Pluripotent Stromal Cells

2020 ◽  
Vol 21 (2) ◽  
pp. 412 ◽  
Author(s):  
Dorothy Moseti ◽  
Alemu Regassa ◽  
Chongxiao Chen ◽  
Karmin O ◽  
Woo Kyun Kim

Understanding of adipogenesis is important to find remedies for obesity and related disorders. In addition, it is also critical in bone disorders because there is a reciprocal relationship between adipogenesis and osteogenesis in bone micro-environment. Oxysterols are pro-osteogenic and anti-adipogenic molecules via hedgehog activation in pluripotent bone marrow stomal cells. However, no study has evaluated the role of specific oxysterols in C3H10T1/2 cells, which are a good cell model for studying osteogenesis and adipogenesis in bone-marrows. Thus, we investigated the effects of specific oxysterols on adipogenesis and expression of adipogenic transcripts in C3H10T1/2 cells. Treatment of cells with DMITro significantly induced mRNA expression of Pparγ. This induction was significantly inhibited by 25-HC. The expression of C/cepα, Fabp4 and Lpl was also inhibited by 25-HC. To determine the mechanism by which 25-HC inhibits adipogenesis, the effects of the hedgehog signalling pathway inhibitor, cyclopamine and CUR61414, were evaluated. Treatment of C3H10T1/2 cells with DMITro + cyclopamine or DMITro + CUR61414 for 96h did not modulate adipocyte differentiation; cyclopamine and CUR61414 did not reverse the inhibitory effects of 25-HC, suggesting that the canonical hedgehog signalling may not play a role in the anti-adipogenic effects of 25-HC in C3H10T1/2 cells. In addition, LXR agonist did not inhibit adipogenesis, but 25-HC strongly inhibits adipogenesis of C3H10T1/2 cells. Our observations showed that 25-HC was the most potent oxysterol in inhibiting adipogenesis and the expression of key adipogenic transcripts in C3H10T1/2 cells among the tested oxysterols, suggesting its potential application in providing an intervention in osteoporosis and obesity. We also report that the inhibitory effects of 25-HC on adipogenic differentiation in C3H10T1/2 cells are not mediated by hedgehog signaling and LXR.

EMBO Reports ◽  
2008 ◽  
Vol 9 (4) ◽  
pp. 330-336 ◽  
Author(s):  
Reid A Aikin ◽  
Katie L Ayers ◽  
Pascal P Thérond

2018 ◽  
Vol 48 (1) ◽  
pp. 397-408 ◽  
Author(s):  
Ingrid  Felicidade ◽  
Daniele Sartori ◽  
Susan L.M. Coort ◽  
Simone Cristine Semprebon ◽  
Andressa Megumi Niwa ◽  
...  

Background/Aims: Compared with non-obese individuals, obese individuals commonly store more vitamin D in adipose tissue. VDR expression in adipose tissue can influence adipogenesis and is therefore a target pathway deserving further study. This study aims to assess the role of 1,25(OH)2D3 in human preadipocyte proliferation and differentiation. Methods: RTCA, MTT, and trypan blue assays were used to assess the effects of 1,25(OH)2D3 on the viability, proliferation, and adipogenic differentiation of SGBS cells. Cell cycle and apoptosis analyses were performed with flow cytometry, triglycerides were quantified, and RT-qPCR was used to assess gene expression. Results: We confirmed that the SGBS cell model is suitable for studying adipogenesis and demonstrated that the differentiation protocol induces cell maturation, thereby increasing the lipid content of cells independently of treatment. 1,25(OH)2D3 treatment had different effects according to the cell stage, indicating different modes of action driving proliferation and differentiation. In preadipocytes, 1,25(OH)2D3 induced G1 growth arrest at both tested concentrations without altering CDKN1A gene expression. Treatment with 100 nM 1,25(OH)2D3 also decreased MTT absorbance and the lipid concentration. Moreover, increased normalized cell index values and decreased metabolic activity were not induced by proliferation or apoptosis. Exposure to 100 nM 1,25(OH)2D3 induced VDR, CEBPA, and CEBPB expression, even in the preadipocyte stage. During adipogenesis, 1,25(OH)2D3 had limited effects on processes such as VDR and PPARG gene expression, but it upregulated CEBPA expression. Conclusions: We demonstrated for the first time that 1,25(OH)2D3 induces changes in preadipocytes, including VDR expression and growth arrest, and increases the lipid content in adipocytes treated for 16 days. Preadipocytes are important cells in adipose tissue homeostasis, and understanding the role of 1,25(OH)2D3 in adipogenesis is a crucial step in ensuring adequate vitamin D supplementation, especially for obese individuals.


Development ◽  
2020 ◽  
Vol 147 (24) ◽  
pp. dev186411 ◽  
Author(s):  
Wilhelm Palm ◽  
Jonathan Rodenfels

ABSTRACTLipids exert diverse functions in living organisms. They form cellular membranes, store and transport energy and play signalling roles. Some lipid species function in all of these processes, making them ideal candidates to coordinate metabolism with cellular homeostasis and animal development. This theme was central to Suzanne Eaton's research in the fruit fly, Drosophila. Here, we discuss her work on membrane lipid homeostasis in changing environments and on functions for lipids in the Hedgehog signalling pathway. We further highlight lipoproteins as inter-organ carriers of lipids and lipid-linked morphogens, which communicate dietary and developmental signals throughout the organism.


Blood ◽  
2013 ◽  
Vol 122 (3) ◽  
pp. 357-366 ◽  
Author(s):  
V. Lokesh Battula ◽  
Ye Chen ◽  
Maria da Graca Cabreira ◽  
Vivian Ruvolo ◽  
Zhiqiang Wang ◽  
...  

Key Points Connective tissue growth factor regulates adipogenic differentiation of MSCs. Connective tissue growth factor regulates leukemia engraftment.


2014 ◽  
Vol 82 (5) ◽  
pp. 728-738 ◽  
Author(s):  
L.C. Gregory ◽  
C. Gaston-Massuet ◽  
C.L. Andoniadou ◽  
G. Carreno ◽  
E.A. Webb ◽  
...  

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 454-454
Author(s):  
Dexter Puckett ◽  
Mohammed Alquraishi ◽  
Samah Chahed ◽  
Dina Alani ◽  
Victoria Frankel ◽  
...  

Abstract Objectives The prevalence of obesity and its comorbidities has sparked a worldwide concern to address rates of adipose tissue accrual. Recent studies have demonstrated a novel role of Zyflamend, a natural herbal extract, in regulating lipid metabolism in several cancer cell lines through the activation of the AMPK signaling pathway. Yet, the role of Zyflamend in adipogenic differentiation and lipid metabolism remains largely unexplored. The objective of this study is to investigate the effects of Zyflamend on white 3T3-MBX pre-adipocyte differentiation and elucidate the molecular mechanisms. Methods 3T3-MBX pre-adipocytes were treated with Zyflamend, and the expression of various key adipogenic and lipolytic regulators was examined. We also investigated the effects of Zyflamend on pre-adipocyte survival, proliferation, and cell cycle. Results Zyflamend treatment altered cell cycle progression, attenuated proliferation, and increased cell death of 3T3-MBX pre-adipocytes. In addition, treatment with Zyflamend inhibited lipid accumulation during the differentiation of 3T3-MBX cells, consistent with decreased expression of lipogenic genes and increased lipolysis. Mechanistically, Zyflamend-induced alterations in adipogenesis were mediated, at least in part, through the activation of AMPK, PKA, and JNK. Inhibition of AMPK partially reversed Zyflamend-induced inhibition of differentiation, whereas the inhibition of either JNK or PKA fully restored adipocyte differentiation and decreased lipolysis. Conclusions Taken together, the present study demonstrates that Zyflamend, as a novel anti-adipogenic bioactive mix, inhibits adipocyte differentiation through the activation of PKA and JNK pathways.Our findings suggest that Zyflamend supplementation might help in developing novel anti-obesity therapeutic strategies. Funding Sources This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (R00DK100736) to A.B.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Simone Maria Kluth ◽  
Teja Falk Radke ◽  
Gesine Kögler

Multipotent stromal cells can be isolated from a variety of different tissues in the body. In contrast to stromal cells from the adult bone marrow (BM) or adipose tissue, cord blood (CB) multipotent stromal cells (MSC) are biologically younger. Since first being described by our group, delta like 1 homologue (DLK-1) was determined as a discriminating factor between the distinct cord blood-derived subpopulations: the unrestricted somatic stromal cells (USSC), which lack adipogenic differentiation capacity, and the BM MSC-like CB MSC. In this study, experiments assessing the haematopoiesis-supporting capacity and molecular biological analyses were conducted and clearly confirmed different properties. Compared to CB MSC, USSC lead to a higher expansion of haematopoietic cells and in addition express significantly higher levels of insulin-like growth factor binding protein 1 (IGFBP1), but lower levels of IGF2. The data presented here also indicate that DLK-1 might not be the sole factor responsible for the inhibition of adipogenic differentiation potential in USSC but nevertheless indicates a biological diversity among cord blood-derived stromal cells.


1998 ◽  
Vol 43 ◽  
pp. 132-132
Author(s):  
R Mae Gailani ◽  
John Bukowski ◽  
Heidi Karpen ◽  
David A Reardon

Sign in / Sign up

Export Citation Format

Share Document