scholarly journals Global Survey and Expressions of the Phosphate Transporter Gene Families in Brassica napus and Their Roles in Phosphorus Response

2020 ◽  
Vol 21 (5) ◽  
pp. 1752 ◽  
Author(s):  
Jin Yang ◽  
Jie Zhou ◽  
Hong-Jun Zhou ◽  
Mang-Mang Wang ◽  
Ming-Ming Liu ◽  
...  

Phosphate (Pi) transporters play critical roles in Pi acquisition and homeostasis. However, currently little is known about these genes in oil crops. In this study, we aimed to characterize the five Pi transporter gene families (PHT1-5) in allotetraploid Brassica napus. We identified and characterized 81 putative PHT genes in B. napus (BnaPHTs), including 45 genes in PHT1 family (BnaPHT1s), four BnaPHT2s, 10 BnaPHT3s, 13 BnaPHT4s and nine BnaPHT5s. Phylogenetic analyses showed that the largest PHT1 family could be divided into two groups (Group I and II), while PHT4 may be classified into five, Groups I-V. Gene structure analysis revealed that the exon-intron pattern was conservative within the same family or group. The sequence characteristics of these five families were quite different, which may contribute to their functional divergence. Transcription factor (TF) binding network analyses identified many potential TF binding sites in the promoter regions of candidates, implying their possible regulating patterns. Collinearity analysis demonstrated that most BnaPHTs were derived from an allopolyploidization event (~40.7%) between Brassica rapa and Brassica oleracea ancestors, and small-scale segmental duplication events (~39.5%) in the descendant. RNA-Seq analyses proved that many BnaPHTs were preferentially expressed in leaf and flower tissues. The expression profiles of most colinearity-pairs in B. napus are highly correlated, implying functional redundancy, while a few pairs may have undergone neo-functionalization or sub-functionalization during evolution. The expression levels of many BnaPHTs tend to be up-regulated by different hormones inductions, especially for IAA, ABA and 6-BA treatments. qRT-PCR assay demonstrated that six BnaPHT1s (BnaPHT1.11, BnaPHT1.14, BnaPHT1.20, BnaPHT1.35, BnaPHT1.41, BnaPHT1.44) were significantly up-regulated under low- and/or rich- Pi conditions in B. napus roots. This work analyzes the evolution and expression of the PHT family in Brassica napus, which will help further research on their role in Pi transport.

2020 ◽  
Vol 21 (24) ◽  
pp. 9487
Author(s):  
Jie Zhou ◽  
Hong-Jun Zhou ◽  
Ping Chen ◽  
Lan-Lan Zhang ◽  
Jia-Tian Zhu ◽  
...  

The KT/HAK/KUP (HAK) family is the largest potassium (K+) transporter family in plants, which plays key roles in K+ uptake and homeostasis, stress resistance, and root and embryo development. However, the HAK family has not yet been characterized in Brassica napus. In this study, 40 putative B. napus HAK genes (BnaHAKs) are identified and divided into four groups (Groups I–III and V) on the basis of phylogenetic analysis. Gene structure analysis revealed 10 conserved intron insertion sites across different groups. Collinearity analysis demonstrated that both allopolyploidization and small-scale duplication events contributed to the large expansion of BnaHAKs. Transcription factor (TF)-binding network construction, cis-element analysis, and microRNA prediction revealed that the expression of BnaHAKs is regulated by multiple factors. Analysis of RNA-sequencing data further revealed extensive expression profiles of the BnaHAKs in groups II, III, and V, with limited expression in group I. Compared with group I, most of the BnaHAKs in groups II, III, and V were more upregulated by hormone induction based on RNA-sequencing data. Reverse transcription-quantitative polymerase reaction analysis revealed that the expression of eight BnaHAKs of groups I and V was markedly upregulated under K+-deficiency treatment. Collectively, our results provide valuable information and key candidate genes for further functional studies of BnaHAKs.


2020 ◽  
Author(s):  
Chong Yang ◽  
Juanjuan Li ◽  
Faisal Islam ◽  
Luyang Hu ◽  
Jiansu Wang ◽  
...  

Abstract Background: WRKY transcription factors play important roles in various physiological processes and stress responses in flowering plants. However, the information about WRKY genes in Helianthus annuus L. (common sunflower) is limited. Results: Ninety WRKY (HaWRKY) genes were identified and renamed according to their locations on chromosomes. Further phylogenetic analyses classified them into four main groups including a species-specific WKKY group and HaWRKY genes within same group or subgroup generally showed similar exon-intron structures and motif compositions. The tandem and segmental duplication possibly contributed to the diversity and expansion of HaWRKY gene families. Synteny analyses of sunflower WRKY genes provided deep insight to the evolution of HaWRKY genes. Transcriptomic and qRT-PCR analyses of HaWRKY genes displayed distinct expression patterns in different plant tissues, as well as under various abiotic and biotic stresses. Conclusions: Ninety WRKY (HaWRKY) genes were identified from H. annuus L. and classified into four groups. Structures of HaWRKY proteins and their evolutionary characteristics were also investigated. The characterization of HaWRKY genes and their expression profiles under biotic and abiotic stresses in this study provide a foundation for further functional analyses of these genes and will be beneficial to crop improvement.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Jing Wen ◽  
Peng-Feng Li ◽  
Feng Ran ◽  
Peng-Cheng Guo ◽  
Jia-Tian Zhu ◽  
...  

Abstract Background NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family (NPF) members are essential transporters for many substrates in plants, including nitrate, hormones, peptides, and secondary metabolites. Here, we report the global characterization of NPF in the important oil crop Brassica napus, including that for phylogeny, gene/protein structures, duplications, and expression patterns. Results A total of 199 B. napus (BnaNPFs) NPF-coding genes were identified. Phylogenetic analyses categorized these genes into 11 subfamilies, including three new ones. Sequence feature analysis revealed that members of each subfamily contain conserved gene and protein structures. Many hormone−/abiotic stress-responsive cis-acting elements and transcription factor binding sites were identified in BnaNPF promoter regions. Chromosome distribution analysis indicated that BnaNPFs within a subfamily tend to cluster on one chromosome. Syntenic relationship analysis showed that allotetraploid creation by its ancestors (Brassica rapa and Brassica oleracea) (57.89%) and small-scale duplication events (39.85%) contributed to rapid BnaNPF expansion in B. napus. A genome-wide spatiotemporal expression survey showed that NPF genes of each Arabidopsis and B. napus subfamily have preferential expression patterns across developmental stages, most of them are expressed in a few organs. RNA-seq analysis showed that many BnaNPFs (32.66%) have wide exogenous hormone-inductive profiles, suggesting important hormone-mediated patterns in diverse bioprocesses. Homologs in a clade or branch within a given subfamily have conserved organ/spatiotemporal and hormone-inductive profiles, indicating functional conservation during evolution. qRT-PCR-based comparative expression analysis of the 12 BnaNPFs in the NPF2–1 subfamily between high- and low-glucosinolate (GLS) content B. napus varieties revealed that homologs of AtNPF2.9 (BnaNPF2.12, BnaNPF2.13, and BnaNPF2.14), AtNPF2.10 (BnaNPF2.19 and BnaNPF2.20), and AtNPF2.11 (BnaNPF2.26 and BnaNPF2.28) might be involved in GLS transport. qRT-PCR further confirmed the hormone-responsive expression profiles of these putative GLS transporter genes. Conclusion We identified 199 B. napus BnaNPFs; these were divided into 11 subfamilies. Allopolyploidy and small-scale duplication events contributed to the immense expansion of BnaNPFs in B. napus. The BnaNPFs had preferential expression patterns in different tissues/organs and wide hormone-induced expression profiles. Four BnaNPFs in the NPF2–1 subfamily may be involved in GLS transport. Our results provide an abundant gene resource for further functional analysis of BnaNPFs.


2019 ◽  
Vol 20 (7) ◽  
pp. 1750 ◽  
Author(s):  
Ghulam Qanmber ◽  
Ji Liu ◽  
Daoqian Yu ◽  
Zhao Liu ◽  
Lili Lu ◽  
...  

Proline-rich extensin-like receptor kinases (PERKs) are an important class of receptor kinases in plants. Receptor kinases comprise large gene families in many plant species, including the 15 PERK genes in Arabidopsis. At present, there is no comprehensive published study of PERK genes in G. hirsutum. Our study identified 33 PERK genes in G. hirsutum. Phylogenetic analysis of conserved PERK protein sequences from 15 plant species grouped them into four well defined clades. The GhPERK gene family is an evolutionarily advanced gene family that lost its introns over time. Several cis-elements were identified in the promoter regions of the GhPERK genes that are important in regulating growth, development, light responses and the response to several stresses. In addition, we found evidence for gene loss or addition through segmental or whole genome duplication in cotton. Gene duplication and synteny analysis identified 149 orthologous/paralogous gene pairs. Ka/Ks values show that most GhPERK genes experienced strong purifying selection during the rapid evolution of the gene family. GhPERK genes showed high expression levels in leaves and during ovule development. Furthermore, the expression of GhPERK genes can be regulated by abiotic stresses and phytohormone treatments. Additionally, PERK genes could be involved in several molecular, biological and physiological processes that might be the result of functional divergence.


2018 ◽  
Author(s):  
Xueyuan Jiang ◽  
Raquel Assis

AbstractGene duplication has played an important role in the evolution and domestication of flowering plants. Yet little is known about how plant duplicate genes evolve and are retained over long timescales, particularly those arising from small-scale duplication (SSD) rather than whole-genome duplication (WGD) events. Here we address this question in the Poaceae (grass) family by analyzing gene expression data from nine tissues of Brachypodium distachyon, Oryza sativa japonica (rice), and Sorghum bicolor (sorghum). Consistent with theoretical predictions, expression profiles of most grass genes are conserved after SSD, suggesting that functional conservation is the primary outcome of SSD in grasses. However, we also uncover support for widespread functional divergence, much of which occurs asymmetrically via the process of neofunctionalization. Moreover, neofunctionalization preferentially targets younger (child) duplicate gene copies, is associated with RNA-mediated duplication, and occurs quickly after duplication. Further analysis reveals that functional divergence of SSD-derived genes is positively correlated with both sequence divergence and tissue specificity in all three grass species, and particularly with anther expression in B. distachyon. Therefore, as found in many animal species, SSD-derived grass genes often undergo rapid functional divergence that may be driven by natural selection on male-specific phenotypes.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Di Wu ◽  
Anqi Liu ◽  
Xiaoyu Qu ◽  
Jiayi Liang ◽  
Min Song

Abstract Background Xyloglucan endotransglucosylase/hydrolase genes (XTHs) are a multigene family and play key roles in regulating cell wall extensibility in plant growth and development. Brassica rapa and Brassica oleracea contain XTHs, but detailed identification and characterization of the XTH family in these species, and analysis of their tissue expression profiles, have not previously been carried out. Results In this study, 53 and 38 XTH genes were identified in B. rapa and B. oleracea respectively, which contained some novel members not observed in previous studies. All XTHs of B. rapa, B. oleracea and Arabidopsis thaliana could be classified into three groups, Group I/II, III and the Early diverging group, based on phylogenetic relationships. Gene structures and motif patterns were similar within each group. All XTHs in this study contained two characteristic conserved domains (Glyco_hydro and XET_C). XTHs are located mainly in the cell wall but some are also located in the cytoplasm. Analyses of the mechanisms of gene family expansion revealed that whole-genome triplication (WGT) events and tandem duplication (TD) may have been the major mechanisms accounting for the expansion of the XTH gene family. Interestingly, TD genes all belonged to Group I/II, suggesting that TD was the main reason for the largest number of genes being in these groups. B. oleracea had lost more of the XTH genes, the conserved domain XET_C and the conserved active-site motif EXDXE compared with B. rapa, consistent with asymmetrical evolution between the two Brassica genomes. A majority of XTH genes exhibited different tissue-specific expression patterns based on RNA-seq data analyses. Moreover, there was differential expression of duplicated XTH genes in the two species, indicating that their functional differentiation occurred after B. rapa and B. oleracea diverged from a common ancestor. Conclusions We carried out the first systematic analysis of XTH gene families in B. rapa and B. oleracea. The results of this investigation can be used for reference in further studies on the functions of XTH genes and the evolution of this multigene family.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Su ◽  
Ali Raza ◽  
Liu Zeng ◽  
Ang Gao ◽  
Yan Lv ◽  
...  

Abstract Background Lipid phosphate phosphatases (LPP) are critical for regulating the production and degradation of phosphatidic acid (PA), an essential signaling molecule under stress conditions. Thus far, the LPP family genes have not been reported in rapeseed (Brassica napus L.). Results In this study, a genome-wide analysis was carried out to identify LPP family genes in rapeseed that respond to different stress conditions. Eleven BnLPPs genes were identified in the rapeseed genome. Based on phylogenetic and synteny analysis, BnLPPs were classified into four groups (Group I-Group IV). Gene structure and conserved motif analysis showed that similar intron/exon and motifs patterns occur in the same group. By evaluating cis-elements in the promoters, we recognized six hormone- and seven stress-responsive elements. Further, six putative miRNAs were identified targeting three BnLPP genes. Gene ontology analysis disclosed that BnLPP genes were closely associated with phosphatase/hydrolase activity, membrane parts, phosphorus metabolic process, and dephosphorylation. The qRT-PCR based expression profiles of BnLPP genes varied in different tissues/organs. Likewise, several gene expression were significantly up-regulated under NaCl, PEG, cold, ABA, GA, IAA, and KT treatments. Conclusions This is the first report to describe the comprehensive genome-wide analysis of the rapeseed LPP gene family. We identified different phytohormones and abiotic stress-associated genes that could help in enlightening the plant tolerance against phytohormones and abiotic stresses. The findings unlocked new gaps for the functional verification of the BnLPP gene family during stresses, leading to rapeseed improvement.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11410
Author(s):  
Heming Zhao ◽  
Yan Maokai ◽  
Han Cheng ◽  
Mingliang Guo ◽  
Yanhui Liu ◽  
...  

Polar auxin transport in plant is mediated by influx and efflux transporters, which are encoded by AUX/LAX, PIN and PILS genes, respectively. The auxin transporter gene families have been characterized in several species from monocots and eudicots. However, a genome-wide overview of auxin transporter gene families in pineapple is not yet available. In this study, we identified a total of threeAcAUX genes, 12 AcPIN genes, and seven AcPILS genes in the pineapple genome, which were variably located on 15 chromosomes. The exon-intron structure of these genes and properties of deduced proteins were relatively conserved within the same family. Most protein motifs were widespread in the AUX, PIN or PILS proteins, whereas a few motifs were absent in only one or two proteins. Analysis of the expression profiles of these genes elucidated that several genes exhibited either preferential or tissue-specific expression patterns in vegetative and/or reproductive tissues. AcAUX2 was specifically expressed in the early developmental ovules, while AcPIN1b and AcPILS2 were strongly expressed in stamens and ovules. AcPIN9b, AcPILS1, AcPILS6a, 6b and 6c were abundantly expressed in stamens. Furthermore, qRT-PCR results showed that several genes in these families were responsive to various abiotic stresses. Comparative analysis indicated that the genes with close evolutionary relationships among pineapple, rice and Arabidopsis exhibited similar expression patterns. Overexpression of the AcAUX1 in Arabidopsis rescued the phenotype in aux1-T, and resulted in increased lateral roots in WT. These results will provide new insights into auxin transporter genes of pineapple and facilitate our understanding of their roles in pineapple growth and development.


2020 ◽  
Author(s):  
Di Wu ◽  
Anqi Liu ◽  
Xiaoyu Qu ◽  
Jiayi Liang ◽  
Min Song

Abstract Background: Xyloglucan endotransglucosylase/hydrolase genes ( XTHs ) are a multigene family and play key roles in regulating cell wall extensibility in plant growth and development. Brassica rapa and Brassica oleracea contain XTHs, but detailed identification and characterization of the XTH family in these species, and analysis of their tissue expression profiles, have not previously been carried out. Results: In this study, 53 and 38 XTH genes were identified in B. rapa and B. oleracea respectively, which contained some novel members not observed in previous studies. All XTHs of B. rapa , B. oleracea and Arabidopsis thaliana could be classified into three groups, Group I/II, III and the Early diverging group, based on phylogenetic relationships. Gene structures and motif patterns were similar within each group. All XTHs in this study contained two characteristic conserved domains (Glyco_hydro and XET_C). XTHs are located mainly in the cell wall but some are also located in the cytoplasm. Analyses of the mechanisms of gene family expansion revealed that whole-genome triplication (WGT) events and tandem duplication (TD) may have been the major mechanisms accounting for the expansion of the XTH gene family. Interestingly, TD genes all belonged to Group I/II, suggesting that TD was the main reason for the largest number of genes being in these groups. B. oleracea had lost more of the XTH genes, the conserved domain XET_C and the conserved active-site motif EXDXE compared with B. rapa , consistent with asymmetrical evolution between the two Brassica genomes. A majority of XTH genes exhibited different tissue-specific expression patterns based on RNA-seq data analyses. Moreover, there was differential expression of duplicated XTH genes in the two species, indicating that their functional differentiation occurred after B. rapa and B. oleracea diverged from a common ancestor. Conclusions: We carried out the first systematic analysis of XTH gene families in B. rapa and B. oleracea . The results of this investigation can be used for reference in further studies on the functions of XTH genes and the evolution of this multigene family.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0241965
Author(s):  
Juanjuan Li ◽  
Faisal Islam ◽  
Qian Huang ◽  
Jian Wang ◽  
Weijun Zhou ◽  
...  

WRKY transcription factors play important roles in various physiological processes and stress responses in flowering plants. Sunflower (Helianthus annuus L.) is one of the important vegetable oil supplies in the world. However, the information about WRKY genes in sunflower is limited. In this study, ninety HaWRKY genes were identified and renamed according to their locations on chromosomes. Further phylogenetic analyses classified them into four main groups including a species-specific WKKY group. Besides, HaWRKY genes within the same group or subgroup generally showed similar exon-intron structures and motif compositions. The gene duplication analysis showed that five pairs of HaWRKY genes (HaWRKY8/9, HaWRKY53/54, HaWRKY65/66, HaWRKY66/67 and HaWRKY71/72) are tandem duplicated and four HaWRKY gene pairs (HaWRKY15/82, HaWRKY25/65, HaWRKY28/55 and HaWRKY50/53) are also identified as segmental duplication events, indicating that these duplication genes were contribute to the diversity and expansion of HaWRKY gene families. The dN/dS ratio of these duplicated gene pairs were also calculated to understand the evolutionary constraints. In addition, synteny analyses of sunflower WRKY genes provided deep insight to the evolution of HaWRKY genes. Transcriptomic and qRT-PCR analyses of HaWRKY genes displayed distinct expression patterns in different plant tissues, as well as under various abiotic and biotic stresses, which provide a foundation for further functional analyses of these genes. Those functional genes related to stress tolerance and quality improvement could be applied in marker assisted breeding of the crop.


Sign in / Sign up

Export Citation Format

Share Document