scholarly journals The Sophisticated Transcriptional Response Governed by Transposable Elements in Human Health and Disease

2020 ◽  
Vol 21 (9) ◽  
pp. 3201
Author(s):  
Federica Marasca ◽  
Erica Gasparotto ◽  
Benedetto Polimeni ◽  
Rebecca Vadalà ◽  
Valeria Ranzani ◽  
...  

Transposable elements (TEs), which cover ~45% of the human genome, although firstly considered as “selfish” DNA, are nowadays recognized as driving forces in eukaryotic genome evolution. This capability resides in generating a plethora of sophisticated RNA regulatory networks that influence the cell type specific transcriptome in health and disease. Indeed, TEs are transcribed and their RNAs mediate multi-layered transcriptional regulatory functions in cellular identity establishment, but also in the regulation of cellular plasticity and adaptability to environmental cues, as occurs in the immune response. Moreover, TEs transcriptional deregulation also evolved to promote pathogenesis, as in autoimmune and inflammatory diseases and cancers. Importantly, many of these findings have been achieved through the employment of Next Generation Sequencing (NGS) technologies and bioinformatic tools that are in continuous improvement to overcome the limitations of analyzing TEs sequences. However, they are highly homologous, and their annotation is still ambiguous. Here, we will review some of the most recent findings, questions and improvements to study at high resolution this intriguing portion of the human genome in health and diseases, opening the scenario to novel therapeutic opportunities.

2011 ◽  
Vol 25 (7) ◽  
pp. 1075-1086 ◽  
Author(s):  
Jamie R. Flammer ◽  
Inez Rogatsky

Abstract For decades, natural and synthetic glucocorticoids (GC) have been among the most commonly prescribed classes of immunomodulatory drugs. Their unsurpassed immunosuppressive and antiinflammatory activity along with cost-effectiveness makes these compounds a treatment of choice for the majority of autoimmune and inflammatory diseases, despite serious side effects that frequently accompany GC therapy. The activated GC receptor (GR) that conveys the signaling information of these steroid ligands to the transcriptional machinery engages a number of pathways to ultimately suppress autoimmune responses. Of those, GR-mediated apoptosis of numerous cell types of hematopoietic origin and suppression of proinflammatory cytokine gene expression have been described as the primary mechanisms responsible for the antiinflammatory actions of GC. However, along with the ever-increasing appreciation of the complex functions of the immune system in health and disease, we are beginning to recognize new facets of GR actions in immune cells. Here, we give a brief overview of the extensive literature on the antiinflammatory activities of GC and discuss in greater detail the unexpected pathways, factors, and mechanisms that have recently begun to emerge as novel targets for GC-mediated immunosuppression.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 672
Author(s):  
Richard A. Pepermans ◽  
Geetanjali Sharma ◽  
Eric R. Prossnitz

Estrogen is involved in numerous physiological and pathophysiological systems. Its role in driving estrogen receptor-expressing breast cancers is well established, but it also has important roles in a number of other cancers, acting both on tumor cells directly as well as in the function of multiple cells of the tumor microenvironment, including fibroblasts, immune cells, and adipocytes, which can greatly impact carcinogenesis. One of its receptors, the G protein-coupled estrogen receptor (GPER), has gained much interest over the last decade in both health and disease. Increasing evidence shows that GPER contributes to clinically observed endocrine therapy resistance in breast cancer while also playing a complex role in a number of other cancers. Recent discoveries regarding the targeting of GPER in combination with immune checkpoint inhibition, particularly in melanoma, have led to the initiation of the first Phase I clinical trial for the GPER-selective agonist G-1. Furthermore, its functions in metabolism and corresponding pathophysiological states, such as obesity and diabetes, are becoming more evident and suggest additional therapeutic value in targeting GPER for both cancer and other diseases. Here, we highlight the roles of GPER in several cancers, as well as in metabolism and immune regulation, and discuss the therapeutic value of targeting this estrogen receptor as a potential treatment for cancer as well as contributing metabolic and inflammatory diseases and conditions.


2021 ◽  
Vol 11 (5) ◽  
pp. 336
Author(s):  
Mohammed Ghiboub ◽  
Ahmed M. I. Elfiky ◽  
Menno P. J. de Winther ◽  
Nicola R. Harker ◽  
David F. Tough ◽  
...  

Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.


2019 ◽  
Vol 8 (2) ◽  
pp. 10 ◽  
Author(s):  
Gonçalves-Dias ◽  
Morello ◽  
Semedo ◽  
Correia ◽  
Coelho ◽  
...  

The mercapturate pathway is a unique metabolic circuitry that detoxifies electrophiles upon adducts formation with glutathione. Since its discovery over a century ago, most of the knowledge on the mercapturate pathway has been provided from biomonitoring studies on environmental exposure to toxicants. However, the mercapturate pathway-related metabolites that is formed in humans—the mercapturomic profile—in health and disease is yet to be established. In this paper, we put forward the hypothesis that these metabolites are key pathophysiologic factors behind the onset and development of non-communicable chronic inflammatory diseases. This review goes from the evidence in the formation of endogenous metabolites undergoing the mercapturate pathway to the methodologies for their assessment and their association with cancer and respiratory, neurologic and cardiometabolic diseases.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 791
Author(s):  
Sung-Min Park ◽  
Tae-Il Kang ◽  
Jae-Seon So

The spliced form of X-box binding protein 1 (XBP1s) is an active transcription factor that plays a vital role in the unfolded protein response (UPR). Under endoplasmic reticulum (ER) stress, unspliced Xbp1 mRNA is cleaved by the activated stress sensor IRE1α and converted to the mature form encoding spliced XBP1 (XBP1s). Translated XBP1s migrates to the nucleus and regulates the transcriptional programs of UPR target genes encoding ER molecular chaperones, folding enzymes, and ER-associated protein degradation (ERAD) components to decrease ER stress. Moreover, studies have shown that XBP1s regulates the transcription of diverse genes that are involved in lipid and glucose metabolism and immune responses. Therefore, XBP1s has been considered an important therapeutic target in studying various diseases, including cancer, diabetes, and autoimmune and inflammatory diseases. XBP1s is involved in several unique mechanisms to regulate the transcription of different target genes by interacting with other proteins to modulate their activity. Although recent studies discovered numerous target genes of XBP1s via genome-wide analyses, how XBP1s regulates their transcription remains unclear. This review discusses the roles of XBP1s in target genes transcriptional regulation. More in-depth knowledge of XBP1s target genes and transcriptional regulatory mechanisms in the future will help develop new therapeutic targets for each disease.


2017 ◽  
Vol 214 (9) ◽  
pp. 2491-2506 ◽  
Author(s):  
Gökhan Cildir ◽  
Harshita Pant ◽  
Angel F. Lopez ◽  
Vinay Tergaonkar

Mast cells are unique tissue-resident immune cells that express an array of receptors that can be activated by several extracellular cues, including antigen–immunoglobulin E (IgE) complexes, bacteria, viruses, cytokines, hormones, peptides, and drugs. Mast cells constitute a small population in tissues, but their extraordinary ability to respond rapidly by releasing granule-stored and newly made mediators underpins their importance in health and disease. In this review, we document the biology of mast cells and introduce new concepts and opinions regarding their role in human diseases beyond IgE-mediated allergic responses and antiparasitic functions. We bring to light recent discoveries and developments in mast cell research, including regulation of mast cell functions, differentiation, survival, and novel mouse models. Finally, we highlight the current and future opportunities for therapeutic intervention of mast cell functions in inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document