scholarly journals Sonic Hedgehog and Triiodothyronine Pathway Interact in Mouse Embryonic Neural Stem Cells

2020 ◽  
Vol 21 (10) ◽  
pp. 3672
Author(s):  
Pavel Ostasov ◽  
Jan Tuma ◽  
Pavel Pitule ◽  
Jiri Moravec ◽  
Zbynek Houdek ◽  
...  

Neural stem cells are fundamental to development of the central nervous system (CNS)—as well as its plasticity and regeneration—and represent a potential tool for neuro transplantation therapy and research. This study is focused on examination of the proliferation dynamic and fate of embryonic neural stem cells (eNSCs) under differentiating conditions. In this work, we analyzed eNSCs differentiating alone and in the presence of sonic hedgehog (SHH) or triiodothyronine (T3) which play an important role in the development of the CNS. We found that inhibition of the SHH pathway and activation of the T3 pathway increased cellular health and survival of differentiating eNSCs. In addition, T3 was able to increase the expression of the gene for the receptor smoothened (Smo), which is part of the SHH signaling cascade, while SHH increased the expression of the T3 receptor beta gene (Thrb). This might be the reason why the combination of SHH and T3 increased the expression of the thyroxine 5-deiodinase type III gene (Dio3), which inhibits T3 activity, which in turn affects cellular health and proliferation activity of eNSCs.

2019 ◽  
Author(s):  
Daniel Z. Radecki ◽  
Heather Messling ◽  
James R. Haggerty-Skeans ◽  
Jayshree Samanta ◽  
James L. Salzer

SUMMARYEnhancing repair of myelin is an important therapeutic goal in many neurological disorders characterized by demyelination. In the healthy adult brain, ventral neural stem cells in the sub-ventricular zone are marked by Gli1 expression and do not generate oligodendrocytes. However, in response to demyelination they migrate to lesions and differentiate into oligodendrocytes. Inhibition of Gli1 further increases their contribution to remyelination. Gli1 and Gli2 are both transcriptional effectors of the Sonic Hedgehog pathway with highly conserved domains but the role of Gli2 in remyelination by ventral neural stem cells is not clear. Here we show that while genetic ablation of Gli1 in the ventral neural stem cells increases remyelination, loss of Gli2 in these cells decreases their migration to the white matter lesion and reduces their differentiation into mature oligodendrocytes. These studies indicate Gli1 and Gli2 have distinct, non-redundant functions in NSCs, including that Gli2 is essential for the enhanced remyelination mediated by Gli1 inhibition. They highlight the importance of designing specific Gli1 inhibitors that do not inhibit Gli2 as a strategy for therapies targeting the Shh pathway.Graphical Abstract


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1468
Author(s):  
Yashika S. Kamte ◽  
Manisha N. Chandwani ◽  
Alexa C. Michaels ◽  
Lauren A. O’Donnell

Viruses that infect the central nervous system (CNS) are associated with developmental abnormalities as well as neuropsychiatric and degenerative conditions. Many of these viruses such as Zika virus (ZIKV), cytomegalovirus (CMV), and herpes simplex virus (HSV) demonstrate tropism for neural stem cells (NSCs). NSCs are the multipotent progenitor cells of the brain that have the ability to form neurons, astrocytes, and oligodendrocytes. Viral infections often alter the function of NSCs, with profound impacts on the growth and repair of the brain. There are a wide spectrum of effects on NSCs, which differ by the type of virus, the model system, the cell types studied, and the age of the host. Thus, it is a challenge to predict and define the consequences of interactions between viruses and NSCs. The purpose of this review is to dissect the mechanisms by which viruses can affect survival, proliferation, and differentiation of NSCs. This review also sheds light on the contribution of key antiviral cytokines in the impairment of NSC activity during a viral infection, revealing a complex interplay between NSCs, viruses, and the immune system.


2008 ◽  
Vol 363 (1500) ◽  
pp. 2111-2122 ◽  
Author(s):  
Hideyuki Okano ◽  
Kazunobu Sawamoto

Recent advances in stem cell research, including the selective expansion of neural stem cells (NSCs) in vitro , the induction of particular neural cells from embryonic stem cells in vitro , the identification of NSCs or NSC-like cells in the adult brain and the detection of neurogenesis in the adult brain (adult neurogenesis), have laid the groundwork for the development of novel therapies aimed at inducing regeneration in the damaged central nervous system (CNS). There are two major strategies for inducing regeneration in the damaged CNS: (i) activation of the endogenous regenerative capacity and (ii) cell transplantation therapy. In this review, we summarize the recent findings from our group and others on NSCs, with respect to their role in insult-induced neurogenesis (activation of adult NSCs, proliferation of transit-amplifying cells, migration of neuroblasts and survival and maturation of the newborn neurons), and implications for therapeutic interventions, together with tactics for using cell transplantation therapy to treat the damaged CNS.


2019 ◽  
Vol 20 (17) ◽  
pp. 4123 ◽  
Author(s):  
Diana ◽  
Gaido ◽  
Murtas

MicroRNAs, also called miRNAs or simply miR-, represent a unique class of non-coding RNAs that have gained exponential interest during recent years because of their determinant involvement in regulating the expression of several genes. Despite the increasing number of mature miRNAs recognized in the human species, only a limited proportion is engaged in the ontogeny of the central nervous system (CNS). miRNAs also play a pivotal role during the transition of normal neural stem cells (NSCs) into tumor-forming NSCs. More specifically, extensive studies have identified some shared miRNAs between NSCs and neural cancer stem cells (CSCs), namely miR-7, -124, -125, -181 and miR-9, -10, -130. In the context of NSCs, miRNAs are intercalated from embryonic stages throughout the differentiation pathway in order to achieve mature neuronal lineages. Within CSCs, under a different cellular context, miRNAs perform tumor suppressive or oncogenic functions that govern the homeostasis of brain tumors. This review will draw attention to the most characterizing studies dealing with miRNAs engaged in neurogenesis and in the tumoral neural stem cell context, offering the reader insight into the power of next generation miRNA-targeted therapies against brain malignances.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Botao Tan ◽  
Zeruxin Luo ◽  
Yan Yue ◽  
Yuan Liu ◽  
Li Pan ◽  
...  

Insufficient proliferation, differentiation, and migration are the main pitfalls of neural stem cells (NSCs) in reparative therapeutics for the central nervous system (CNS) diseases. The potent lipid mediator sphingosine-1-phosphate (S1P) regulates cells’ biological behavior broadly in the CNS. However, the effects of activating S1P on NSCs are not quite clear. In the current study, FTY720 (Fingolimod), an analog of S1P, was employed to induce the proliferation, differentiation, and migration of cultured brain-derived NSCs. The results indicated that proliferation and migration ability of NSCs were promoted by FTY720. Though we observed no obvious neuron prefers differentiation of NSCs, there were more protoplasmic astrocytes developed in the presence of certain concentration of FTY720. This work gives more comprehensive understanding of how FTY720 affects NSCs.


Sign in / Sign up

Export Citation Format

Share Document