scholarly journals Blood Oxidative Stress Modulates Alveolar Bone Loss in Chronically Stressed Rats

2020 ◽  
Vol 21 (10) ◽  
pp. 3728 ◽  
Author(s):  
Micaele Maria Lopes Castro ◽  
Priscila Cunha Nascimento ◽  
Deiweson Souza-Monteiro ◽  
Sávio Monteiro Santos ◽  
Mayra Barros Arouck ◽  
...  

We aimed to investigate the effects of chronic stress (CS) on experimental periodontitis (EP) in rats. For this, 28 Wistar rats were divided into four groups: control, ligature-induced experimental periodontitis (EP), chronic stress (CS; by physical restraint model) and CS+EP (association of chronic stress and ligature-induced periodontitis). The experimental period lasted 30 days, including exposure to CS every day and ligature was performed on the 15th experimental day. After 30 days, the animals were submitted to the behavioral test of the elevated plus maze (EPM). Next, rats were euthanized for blood and mandible collection in order to evaluate the oxidative biochemistry (by nitric oxide (NO), reduced-glutathione activity (GSH), and thiobarbituric acid reactive substance levels (TBARS)) and alveolar bone characterization (by morphometric, micro-CT, and immunohistochemistry), respectively. The behavioral parameters evaluated in EPM indicated higher anxiogenic activity in the CS and CS+EP, groups, which is a behavioral reflex of CS. The results showed that CS was able to change the blood oxidative biochemistry in CS and CS+EP groups, decrease GSH activity in the blood, and increase the NO and TBARS concentrations. Thus, CS induces oxidative blood imbalance, which can potentialize or generate morphological, structural, and metabolic damages to the alveolar bone.

Author(s):  
JordanaHeidemann Pandini ◽  
Lais Fernanda Pasqualotto ◽  
Pedro Henrique de Carli Rodrigues ◽  
João Paulo Gonçalves De Paivaa ◽  
Patricia Oehlmeyer Nassar ◽  
...  

The resveratrol is a polyphenol known for its health benefits, which includes the ability to interfere in the osteoblastogenesis, which may foster adverse immunomodulators effects in the host response to periodontal disease. In the present study we evaluated the appearance of periodontal tissues of rats with experimentally induced periodontitis, by using resveratrol. Twenty-four male Wistar rats were used, in which half of the animals received a ligature around the first lower molars, then forming the groups with experimental periodontitis. Next, four groups were created: 1) Control Group (CON); 2) The Ligature Group (LIG); 3) Group Resveratrol (RSV); 4) Ligature-Resveratrol Group (LIG-RSV). The animals of the Resveratrol groups were daily dosed with 10 mg/kg of body weight of polyphenol orally, during four weeks. After 105 days of experimental period, euthanasia was performed. The results showed a significantly lower alveolar bone loss (p<0.05) in animals that received resveratrol, and still, the polyphenol was able to reduce concentration of interleukin 17 (IL-17) in the groups dosed with it. Our conclusion is that dosing rats with experimental periodontitis with resveratrol could cause a protective effect on the alveolar bone loss, in addition to act positively on the IL-17.


2021 ◽  
Author(s):  
Jing Zhou ◽  
Lingjun Li ◽  
Di Cui ◽  
Xiaoting Xie ◽  
Wenrong Yang ◽  
...  

Abstract Background Nanomaterials of biomedicine and tissue engineering have been proposed in the treatment of periodontitis recently. This study aimed to investigate the effect of gold nanoparticles (AuNPs) combined human β-defensin 3 (hBD3) on the repair of alveolar bone of experimental periodontitis in rats. Methods A model of experimental periodontitis was established by ligating of the maxillary second molars with silk thread in rats, which were treated with or without AuNPs combined hBD3. Micro-focus computerized tomography (micro-CT) scanning, enzyme-linked immunosorbent assay (ELISA) and histological and immunohistochemical staining, including alkaline phosphatase (ALP), osteoprotegerin (OPG) tartrate-resistant acid phosphatase (TRAP) and receptor activator of NF-κB Ligand (RANKL), were used to analyze. Results Micro-CT demonstrated that the alveolar bone resorption was significantly reduced after the treatment of AuNPs combined hBD3. Levels of TNF-α and IL-6 decreased markedly compared with the ligation group. HE and Masson staining showed that AuNPs combined hBD3 group had less inflammatory cell infiltration, collagen fibrosis and fracture, but higher calcification in the new bone tissue. Moreover, the administration of AuNPs combined hBD3 increased the expression of ALP and OPG (related to bone formation) expression, while decreased TRAP and RANKL (related to bone resorption) expression. Conclusions AuNPs combined hBD3 had a protective effect on the progress of experimental periodontitis in rats, and also played a certain role in promoting osteogenesis.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jing Zhou ◽  
Lingjun Li ◽  
Di Cui ◽  
Xiaoting Xie ◽  
Wenrong Yang ◽  
...  

Abstract Background Nanomaterials of biomedicine and tissue engineering have been proposed for the treatment of periodontitis in recent years. This study aimed to investigate the effects of gold nanoparticles (AuNPs) combined with human β-defensin 3 (hBD3) on the repair of the alveolar bones of experimental periodontitis in rats. Methods A model of experimental periodontitis was established by ligation of the maxillary second molars with silk thread in rats, which were treated with or without AuNPs combined with hBD3. Micro‐computerized tomography (micro-CT) scanning, enzyme-linked immunosorbent assay, and histological and immunohistochemical staining, including alkaline phosphatase (ALP), osteoprotegerin (OPG), tartrate-resistant acid phosphatase (TRAP), and receptor activator of NF-κB ligand (RANKL), were used to analyze the samples. Results Micro-CT demonstrated that the alveolar bone resorption was significantly reduced after the treatment with AuNPs combined with hBD3. Levels of TNF-α and IL-6 were decreased markedly compared with the ligation group. H&E and Masson staining showed that AuNPs combined with hBD3 group had less inflammatory cell infiltration, collagen fibrosis and fracture, but higher calcification in the new bone tissue. Moreover, the administration of AuNPs combined with hBD3 increased the expression levels of ALP and OPG (related to bone formation) while decreasing the expression levels of TRAP and RANKL (related to bone resorption) expression. Conclusions AuNPs combined with hBD3 had a protective effect on the progression of experimental periodontitis in rats and played a certain role in suppressing osteoclastogenesis and alleviating the inflammatory destruction of periodontitis along with the promotion of bone repair.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Magdalena Górnicka ◽  
Anna Ciecierska ◽  
Jadwiga Hamulka ◽  
Małgorzata E. Drywień ◽  
Joanna Frackiewicz ◽  
...  

The effect of α-tocopherol supplementation on adaptation to training is still equivocal. The aim of the study was to determine the effect of training and α-tocopherol supplementation on α-tocopherol and thiobarbituric acid reactive substance (TBARS) concentration in the rat liver, heart, muscles, and testes. Male Wistar rats (n=32) were divided into four groups (nonsupplemented, not trained—C; nonsupplemented, trained—CT; supplemented, not trained—E; supplemented and trained—ET). During the 14-day experimental period, 2 mg/d of vitamin E as α-tocopherol acetate was administered to the animals (groups E and ET). Rats in the training group (CT and ET) were subjected to 15 minutes of treadmill running each day. The α-tocopherol levels in rat tissues were assessed using high-performance liquid chromatography (HPLC). Lipid peroxides were determined by TBARS spectrophotometric method. α-Tocopherol had a significant impact on α-tocopherol concentration in all tissues. Training increased the α-tocopherol concentration in the heart and muscles but reduced it in the liver. Training also caused increased lipid peroxidation in the muscles, heart, and testes; but a higher α-tocopherol content in tissues reduced the TBARS level. The main finding of the study is that impaired α-tocopherol status and its adequate intake is needed to maintain optimal status to prevent damage to the skeletal and cardiac muscles as well as the testes in growing individuals.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
David Bougolla Pahaye ◽  
Elisabeth Ngo Bum ◽  
Germain Sotoing Taïwé ◽  
Gwladys Temkou Ngoupaye ◽  
Neteydji Sidiki ◽  
...  

Aim. To assess memory improvement and neuroprotective and antioxidant effects ofMitragyna inermis(M. inermis) leaf decoction on the central nervous system.Methodology. Leaf decoction ofM. inermiswas tested on learning and memory in normal and scopolamine-induced cognitive impairment in mice using memory behavioral tests such as the Morris water maze, object recognition task, and elevated plus maze. Oxidative stress enzymes—catalase, superoxide dismutase, and the thiobarbituric acid reactive substance, a product of lipid peroxidation—were quantified. In each test, mice 18 to 25 g were divided into groups of 5.Results. The extract reversed the effects of scopolamine in mice. The extract significantly increased discrimination index in the object recognition task test and inflexion ratio in the elevated plus maze test. The times spent in target quadrant in MWM increased while the transfer latency decreased in mice treated byM. inermisat the dose of 196.5 mg/kg. The activity levels of superoxide dismutase and catalase were significantly increased, whereas the thiobarbituric acid reactive substance was significantly decreased after 8 consecutive days of treatment withM. inermisat the dose of 393 mg/kg.Conclusion. These results suggest thatM. inermisleaf extract possess potential antiamnesic effects.


2014 ◽  
Vol 42 (02) ◽  
pp. 361-374 ◽  
Author(s):  
Chih-Yuan Chang ◽  
Earl Fu ◽  
Cheng-Yang Chiang ◽  
Wei-Jeng Chang ◽  
Wan-Chien Cheng ◽  
...  

We evaluated the effects of paeonol, a phenolic compound of Moutan Cortex, on the tissue inflammation and destruction in experimental periodontitis of rats. The maxillary palatal bony surfaces of 18 rats received injections of lipopolysaccharide (LPS, 5 mg/mL), PBS or LPS-plus-paeonol (40 mg/kg, intra-peritoneal injection) for three days. Five days later, the osteoclasts were examined and compared after tartrate-resistant acid phosphatase staining. In another 36 rats, the experimental periodontitis was induced by placing the ligatures around the maxillary second and mandibular first molars. Seven days later, the periodontal destruction and inflammation in rats with paeonol (40 mg/kg or 80 mg/kg) and those who had no ligature or without paeonol were compared by dental radiography, micro-computerized tomography (micro-CT), and histology. Gingival mRNA expressions of pre-inflammatory cytokines, including IL-1β' IL-6 and TNF-α were also examined. Compared to the effect of the LPS positive control, the paeonol injection significantly reduced the induced osteoclast formation. In ligature-induced periodontitis, the periodontal bone supporting ratio was significantly higher in the ligature-plus-paeonol groups compared to that of the ligature group, although they were still less than those in the non-ligature group. By micro-CT and by histology/histometry, a consistent anti-destructive effect was observed when paeonol was added. Moreover, less amount of inflammatory cell-infiltrated connective tissue area, connective tissue attachment, and mRNA expressions of pro-inflammatory cytokines were presented in the ligature-plus-paeonol groups than those in the ligature group. These results suggested that paeonol might have a protective potential on gingival tissue inflammation and alveolar bone loss during the process of periodontitis by inhibiting pro-inflammatory cytokines.


2011 ◽  
Vol 14 (3) ◽  
pp. 443-448 ◽  
Author(s):  
N. Kurhalyuk ◽  
H. Tkachenko ◽  
K. Pałczyńska

Resistance of erythrocytes from Brown trout (Salmo trutta m. trutta L.) affected by ulcerative dermal necrosis syndrome In the present work we evaluated the effect of ulcerative dermal necrosis (UDN) syndrome on resistance of erythrocytes to haemolytic agents and lipid peroxidation level in the blood from brown trout (Salmo trutta m. trutta L.). Results showed that lipid peroxidation increased in erythrocytes, as evidenced by high thiobarbituric acid reactive substance (TBARS) levels. Compared to control group, the resistance of erythrocytes to haemolytic agents was significantly lower in UDN-positive fish. Besides, UDN increased the percent of hemolysated erythrocytes subjected to the hydrochloric acid, urea and hydrogen peroxide. Results showed that UDN led to an oxidative stress in erythrocytes able to induce enhanced lipid peroxidation level, as suggested by TBARS level and decrease of erythrocytes resistance to haemolytic agents.


2019 ◽  
Vol 15 (7) ◽  
pp. 771-780
Author(s):  
He-Min Li ◽  
Ting Gu ◽  
Wen-Yu Wu ◽  
Shao-Peng Yu ◽  
Tian-Yuan Fan ◽  
...  

Background: Exogenous antioxidants are considered as a promising therapeutic approach to treat neurodegenerative diseases since they could prevent and/or minimize the neuronal damage by oxidation. Objective: Three series of lipophilic compounds structurally based on scutellarein (2), which is one metabolite of scutellarin (1) in vivo, have been designed and synthesized. Methods: Their antioxidant activity was evaluated by detecting the 2-thiobarbituric acid reactive substance (TBARS) produced in the ferrous salt/ascorbate-induced autoxidation of lipids, which were present in microsomal membranes of rat hepatocytes. The lipophilicity of these compounds indicated as partition coefficient between n-octanol and buffer was investigated by ultraviolet (UV) spectrophotometer. Results: This study indicated that compound 5e which had a benzyl group substituted at the C4'- OH position showed a potent antioxidant activity and good lipophilicity. Conclusion: 5e could be an effective candidate for preventing or reducing the oxidative status associated with the neurodegenerative processes.


Author(s):  
Ozkan Karatas ◽  
Fikret Gevrek

Background: 3,4,5-Trihydroxybenzoic acid, which is also known as gallic acid, is an anti-inflammatory agent who could provide beneficial effects in preventing periodontal inflammation. The present study aimed to evaluate the anti-inflammatory effects of gallic acid on experimental periodontitis in Wistar rats. Alveolar bone loss, osteoclastic activity, osteoblastic activity, and collagenase activity were also determined. Methods: 32 Wistar rats were used in the present study. Study groups were created as following: Healthy control (C,n=8) group; periodontitis (P,n=8) group; periodontitis and 30 mg/kg gallic acid administered group (G30,n=8); periodontitis and 60 mg/kg gallic acid administered group (G60,n=8). Experimental periodontitis was created by placing 4-0 silk sutures around the mandibular right first molar tooth. Morphological changes in alveolar bone were determined by stereomicroscopic evaluation. Mandibles were undergone histological evaluation. Matrix metalloproteinase (MMP)-8, tissue inhibitor of MMPs (TIMP)-1, bone morphogenetic protein (BMP)-2 expressions, tartrate-resistant acid phosphatase (TRAP) positive osteoclast cells, osteoblast, and inflammatory cell counts were determined. Results: Highest alveolar bone loss was observed in the periodontitis group. Both doses of gallic acid decreased alveolar bone loss compared to the P group. TRAP-positive osteoclast cell counts were higher in the P group, and gallic acid successfully lowered these counts. Osteoblast cells also increased in gallic acid administered groups. Inflammation in the P group was also higher than those of C, G30, and G60 groups supporting the role of gallic acid in preventing inflammation. 30 and 60 mg/kg doses of gallic acid decreased MMP-8 levels and increased TIMP-1 levels. BMP levels increased in gallic acid administered groups, similar to several osteoblasts. Conclusion: Present results revealed an anti-inflammatory effect of gallic acid, which was indicated by decreased alveolar bone loss and collagenase activity and increased osteoblastic activity.


Sign in / Sign up

Export Citation Format

Share Document