scholarly journals Innate Immune Cells and Their Contribution to T-Cell-Based Immunotherapy

2020 ◽  
Vol 21 (12) ◽  
pp. 4441 ◽  
Author(s):  
Pierpaolo Ginefra ◽  
Girieca Lorusso ◽  
Nicola Vannini

In recent years, immunotherapy has become the most promising therapy for a variety of cancer types. The development of immune checkpoint blockade (ICB) therapies, the adoptive transfer of tumor-specific T cells (adoptive cell therapy (ACT)) or the generation of T cells engineered with chimeric antigen receptors (CAR) have been successfully applied to elicit durable immunological responses in cancer patients. However, not all the patients respond to these therapies, leaving a consistent gap of therapeutic improvement that still needs to be filled. The innate immune components of the tumor microenvironment play a pivotal role in the activation and modulation of the adaptive immune response against the tumor. Indeed, several efforts are made to develop strategies aimed to harness innate immune cells in the context of cancer immunotherapy. In this review, we describe the contribution of innate immune cells in T-cell-based cancer immunotherapy and the therapeutic approaches implemented to broaden the efficacy of these therapies in cancer patients.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 996-996
Author(s):  
Xiufen Chen ◽  
Dominick Fosco ◽  
Douglas E. Kline ◽  
Justin Kline

Abstract Pre-apoptotic cancer cells release internalized calreticulin (CRT) to their surface prior to death, which acts as an ‘eat-me’ signal to local phagocytes. Chemotherapy and irradiation, which can induce immunogenic cell death through CRT translocation, can also result in local and/or systemic immune suppression in the host. To bypass the requirement of exposing the host to chemotherapy to induce translocation of CRT to the cell surface, murine acute myeloid leukemia (AML) cells (C1498), were engineered to constitutively express cell surface CRT (C1498.CRT). Vector control C1498 or C1498.CRT cells were inoculated intravenously (IV) into C57BL/6 mice. Significantly prolonged survival was observed in hosts harboring C1498.CRT versus vector control C1498 cells systemically. The survival benefit were abrogated in both Rag2-/- hosts or by depletion of T cells with anti-CD4 plus anti-CD8 antibodies, arguing that the immune-mediated effect of cell-surface CRT expression is dependent upon a functional adaptive immune system. More strikingly, systemic inoculation with C1498.CRT cells expressing the model SIYRYYGL (SIY) peptide antigen (C1498.SIY.CRT cells) resulted in almost complete protection from AML development (>90% long term survival vs. 10% of C1498.SIY vector control cells). All animals surviving a primary C1498.SIY.CRT challenge rejected a subsequent re-challenge with C1498.SIY cells, suggesting that CRT-expressing AML cells promote immunologic memory. Significantly enhanced expansion and unregulated IFNγ production were observed among SIY-specific T cell receptor transgenic CD8+ 2C T cells following their adoptive transfer into hosts bearing C1498.SIY.CRT AML cells versus vector control C1498.SIY cells. Interestingly, CRT expression on AML cells did not promote their in vivo phagocytosis by innate immune cells, specifically splenic CD8a+ dendritic cells known to engulf AML cells following their IV inoculation. IL-12 production by CD8α+CD11c+ dendritic cells which had engulfed C1498 and C1498.CRT cells in vivo was similarly induced, and cross-presentation of the SIY antigen to 2C T cells ex vivo by purified CD8a+DCs following in vivo exposure to C1498.SIY or C1498.SIY.CRT cells was also similar. In conclusion, it is clear that expression on CRT on the surface of AML cells leads to robust leukemia-specific T cell activation and expansion resulting in prolonged leukemia-specific survival in AML-bearing animals. Although a direct effect of CRT on innate immune cells, such as dendritic cells, is suspected, the molecular mechanism underlying the “CRT effect” remains unclear, and is being explored further through gene expression analysis in purified DCs which have engulfed CRT-expressing or control AML cells in vivo, as well as in animals genetically deficient in the putative CRT receptor, LRP, in dendritic cells. It will be of interest to analyze spontaneous CRT expression on AML cells from human samples and to correlate cell surface CRT expression with the presence or absence of spontaneous T cell responses to known AML antigens and with clinical outcomes. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dearbhla M. Murphy ◽  
Kingston H. G. Mills ◽  
Sharee A. Basdeo

The burgeoning field of innate immune training, also called trained immunity, has given immunologists new insights into the role of innate responses in protection against infection and in modulating inflammation. Moreover, it has led to a paradigm shift in the way we think about immune memory and the interplay between innate and adaptive immune systems in conferring immunity against pathogens. Trained immunity is the term used to describe the medium-term epigenetic and metabolic reprogramming of innate immune cells in peripheral tissues or in the bone marrow stem cell niche. It is elicited by an initial challenge, followed by a significant period of rest that results in an altered response to a subsequent, unrelated challenge. Trained immunity can be associated with increased production of proinflammatory mediators, such as IL-1β, TNF and IL-6, and increased expression of markers on innate immune cells associated with antigen presentation to T cells. The microenvironment created by trained innate immune cells during the secondary challenge may have profound effects on T cell responses, such as altering the differentiation, polarisation and function of T cell subtypes, including Th17 cells. In addition, the Th1 cytokine IFN-γ plays a critical role in establishing trained immunity. In this review, we discuss the evidence that trained immunity impacts on or can be impacted by T cells. Understanding the interplay between innate immune training and how it effects adaptive immunity will give insights into how this phenomenon may affect the development or progression of disease and how it could be exploited for therapeutic interventions or to enhance vaccine efficacy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Bella Guerrouahen ◽  
Muhammad Elnaggar ◽  
Anjud Al-Mohannadi ◽  
Dhanya Kizhakayil ◽  
Chiara Bonini ◽  
...  

The progress in the isolation and characterization of tumor antigen (TA)-specific T lymphocytes and in the genetic modification of immune cells allowed the clinical development of adoptive cell therapy (ACT). Several clinical studies highlighted the striking clinical activity of T cells engineered to express either Chimeric Antigen (CAR) or T Cell (TCR) Receptors to target molecularly defined antigens expressed on tumor cells. The breakthrough of immunotherapy is represented by the approval of CAR-T cells specific for advanced or refractory CD19+ B cell malignancies by both the Food and Drug Administration (FDA) and the European Medicinal Agency (EMA). Moreover, advances in the manufacturing and gene editing of engineered immune cells contributed to the selection of drug products with desired phenotype, refined specificity and decreased toxicity. An important step toward the optimization of CAR-T cell therapy is the development of “off-the shelf” T cell products that allow to reduce the complexity and the costs of the manufacturing and to render these drugs available for a broad number of cancer patients. The Engineered Immune Cells in Cancer Immunotherapy (EICCI) workshop hosted in Doha, Qatar, renowned experts, from both academia and industry, to present and discuss the progress on both pre-clinical and clinical development of genetically modified immune cells, including advances in the “off-the-shelf” manufacturing. These experts have addressed also organizational needs and hurdles for the clinical grade production and application of these biological drugs.


2020 ◽  
Vol 21 (18) ◽  
pp. 6604 ◽  
Author(s):  
Yuki Sato ◽  
Eisaku Ogawa ◽  
Ryuhei Okuyama

Psoriasis is a chronic inflammatory skin condition caused by a combination of hereditary and environmental factors. Its development is closely related to the adaptive immune response. T helper 17 cells are major IL-17-producing cells, a function that plays an important role in the pathogenesis of psoriasis. However, recent findings have demonstrated that innate immune cells also contribute to the development of psoriasis. Innate lymphoid cells, γδ T cells, natural killer T cells, and natural killer cells are activated in psoriasis, contributing to disease pathology through IL-17-dependent and -independent mechanisms. The present review provides an overview of recent findings, demonstrating a role for innate immunity in psoriasis.


Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3123-3130 ◽  
Author(s):  
Adeeb H. Rahman ◽  
Ruan Zhang ◽  
Christopher D. Blosser ◽  
Baidong Hou ◽  
Anthony L. DeFranco ◽  
...  

Abstract Inflammatory signals induced during infection regulate T-cell expansion, differentiation, and memory formation. Toll-like receptors (TLRs) are inflammatory mediators that allow innate immune cells to recognize and respond to invading pathogens. In addition to their role in innate immune cells, we have found that signals delivered through the TLR adapter protein myeloid differentiation protein 88 (MyD88) play a critical, T cell–intrinsic role in supporting the survival and accumulation of antigen-specific effector cells after acute viral infection. However, the importance of MyD88-dependent signals in regulating the generation and maintenance of memory T cells remained unclear. To address this, we used a novel, inducible knockout system to examine whether MyD88 is required for optimal memory CD8 T-cell generation and responses after lymphocytic choriomeningitis virus infection. We show that whereas MyD88 is critical for initial T-cell expansion, it is not required for the subsequent differentiation and stable maintenance of a memory T-cell population. Furthermore, in contrast to naive CD8 T cells, memory CD8 T cells do not depend on MyD88 for their secondary expansion. Our findings clarify the importance of MyD88 during distinct phases of the antiviral T-cell response and establish differential dependence on MyD88 signaling as a novel characteristic that distinguishes naive from memory CD8 T cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amrendra Kumar ◽  
Reese Watkins ◽  
Anna E. Vilgelm

The rationale behind cancer immunotherapy is based on the unequivocal demonstration that the immune system plays an important role in limiting cancer initiation and progression. Adoptive cell therapy (ACT) is a form of cancer immunotherapy that utilizes a patient’s own immune cells to find and eliminate tumor cells, however, donor immune cells can also be employed in some cases. Here, we focus on T lymphocyte (T cell)-based cancer immunotherapies that have gained significant attention after initial discoveries that graft-versus-tumor responses were mediated by T cells. Accumulating knowledge of T cell development and function coupled with advancements in genetics and data science has enabled the use of a patient’s own (autologous) T cells for ACT (TIL ACTs). In TIL ACT, tumor-infiltrating lymphocytes (TILs) are collected from resected tumor material, enhanced and expanded ex-vivo, and delivered back to the patient as therapeutic agents. ACT with TILs has been shown to cause objective tumor regression in several types of cancers including melanoma, cervical squamous cell carcinoma, and cholangiocarcinoma. In this review, we provide a brief history of TIL ACT and discuss the current state of TIL ACT clinical development in solid tumors. We also discuss the niche of TIL ACT in the current cancer therapy landscape and potential strategies for patient selection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wilfredo F. Garcia-Beltran ◽  
Daniel T. Claiborne ◽  
Colby R. Maldini ◽  
Meredith Phelps ◽  
Vladimir Vrbanac ◽  
...  

Humanized bone marrow-liver-thymus (HuBLT) mice are a revolutionary small-animal model that has facilitated the study of human immune function and human-restricted pathogens, including human immunodeficiency virus type 1 (HIV-1). These mice recapitulate many aspects of acute and chronic HIV-1 infection, but exhibit weak and variable T-cell responses when challenged with HIV-1, hindering our ability to confidently detect HIV-1–specific responses or vaccine effects. To identify the cause of this, we comprehensively analyzed T-cell development, diversity, and function in HuBLT mice. We found that virtually all HuBLT were well-reconstituted with T cells and had intact TCRβ sequence diversity, thymic development, and differentiation to memory and effector cells. However, there was poor CD4+ and CD8+ T-cell responsiveness to physiologic stimuli and decreased TH1 polarization that correlated with deficient reconstitution of innate immune cells, in particular monocytes. HIV-1 infection of HuBLT mice showed that mice with higher monocyte reconstitution exhibited greater CD8+ T cells responses and HIV-1 viral evolution within predicted HLA-restricted epitopes. Thus, T-cell responses to immune challenges are blunted in HuBLT mice due to a deficiency of innate immune cells, and future efforts to improve the model for HIV-1 immune response and vaccine studies need to be aimed at restoring innate immune reconstitution.


2020 ◽  
Vol 8 (2) ◽  
pp. 176 ◽  
Author(s):  
Yann Sellier ◽  
Florence Marliot ◽  
Bettina Bessières ◽  
Julien Stirnemann ◽  
Ferechte Encha-Razavi ◽  
...  

Background: The understanding of the pathogenesis of cytomegalovirus (CMV)-induced fetal brain lesions is limited. We aimed to quantify adaptive and innate immune cells and CMV-infected cells in fetal brains with various degrees of brain damage. Methods: In total, 26 archived embedded fetal brains were studied, of which 21 were CMV-infected and classified in severely affected (n = 13) and moderately affected (n = 8), and 5 were uninfected controls. The respective magnitude of infected cells, immune cells (CD8+, B cells, plasma cells, NK cells, and macrophages), and expression of immune checkpoint receptors (PD-1/PD-L1 and LAG-3) were measured by immunochemistry and quantified by quantitative imaging analysis. Results: Quantities of CD8+, plasma cells, NK cells, macrophages, and HCMV+ cells and expression of PD-1/PD-L1 and LAG-3 were significantly higher in severely affected than in moderately affected brains (all p values < 0.05). A strong link between higher number of stained cells for HCMV/CD8 and PD-1 and severity of brain lesions was found by component analysis. Conclusions: The higher expression of CD8, PD-1, and LAG-3 in severely affected brains could reflect immune exhaustion of cerebral T cells. These exhausted T cells could be ineffective in controlling viral multiplication itself, leading to more severe brain lesions. The study of the functionality of brain leucocytes ex vivo is needed to confirm this hypothesis.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Sung Won Lee ◽  
Hyun Jung Park ◽  
Nayoung Kim ◽  
Seokmann Hong

Natural killer dendritic cells (NKDCs) possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT) cells is required for the anti-tumor immune responses that are elicited byα-galactosylceramide (α-GC) in mice. The rapid and strong expression of interferon-γby NKDCs afterα-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated followingα-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited byα-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated byα-GC-stimulated NKT cellsin vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document