scholarly journals Influence of Intermittent Cold Stimulations on CREB and Its Targeting Genes in Muscle: Investigations into Molecular Mechanisms of Local Cryotherapy

2020 ◽  
Vol 21 (13) ◽  
pp. 4588
Author(s):  
Takehito Sugasawa ◽  
Yoshiya Tome ◽  
Yoshinori Takeuchi ◽  
Yasuko Yoshida ◽  
Naoya Yahagi ◽  
...  

Local cryotherapy is widely used as a treatment for sports-related skeletal muscle injuries. The molecular mechanisms are unknown. To clarify these mechanisms, we applied one to three 15-min cold stimulations at 4 °C to various cell lines (in vitro), the tibialis anterior (TA) muscle (ex vivo), and mouse limbs (in vivo). In the in vitro assay, cyclic AMP (cAMP) response element binding protein 1 (CREB1) was markedly phosphorylated (p-CREB1), and the CREB-binding protein (CBP) was recruited to p-CREB-1 in response to two or three cold stimulations. In a reporter assay with the cAMP-responsive element, the signals significantly increased after two to three cold stimulations at 4 °C. In the ex vivo study, CREB-targeting genes were significantly upregulated following two or three cold stimulations. The in vivo experiment disclosed that cold stimulation of a mouse limb for 9 days significantly increased mitochondrial DNA copy number and upregulated genes involved in mitochondrial biogenesis. The results suggest that local cryotherapy increases CREB transcription and upregulates CREB-targeting genes, in a manner dependent on cold stimulation frequency and duration. This information will inform further investigations into local cryotherapy as a treatment for sports-related skeletal muscle trauma.

Author(s):  
Takehito Sugasawa ◽  
Tome Yoshiya ◽  
Yoshinori Takeuchi ◽  
Naoya Yahagi ◽  
Rahul Sharma ◽  
...  

Local cryotherapy is widely used as a treatment for sports-related skeletal muscle injury. However, its molecular mechanisms are unknown. To clarify these mechanisms, in this study, we applied one to three 15-min cold stimulations at 4 °C to various cell lines (in vitro), the tibialis anterior (TA) muscle (ex vivo), and mouse limbs (in vivo). In the in vitro assay, cAMP response element-binding protein 1 (CREB1) was markedly phosphorylated (as pCREB1) and CREB-binding protein (CBP) was recruited to pCREB-1 in response to two or three cold stimulations. In a reporter assay with the cAMP-responsive element, the signals significantly increased after two to three cold stimulations at 4 °C. In the ex vivo study, CREB-targeting genes were significantly upregulated following two or three cold stimulations. The in vivo experiment disclosed that cold stimulation of a mouse limb for 9 days significantly increased mitochondrial DNA copy number and upregulated genes such as Pgc-1α involved in mitochondrial biogenesis. The foregoing results suggest that local cryotherapy increases CREB transcription and upregulates CREB-targeting genes in a manner dependent on cold stimulation frequency and duration. This information may serve as an impetus for further investigations into local cryotherapy as a treatment for sports-related skeletal muscle trauma.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 431 ◽  
Author(s):  
Rosa Vitale ◽  
Enrico D'Aniello ◽  
Stefania Gorbi ◽  
Andrea Martella ◽  
Cristoforo Silvestri ◽  
...  

Although the chemical warfare between invasive and native species has become a central problem in invasion biology, the molecular mechanisms by which bioactive metabolites from invasive pests influence local communities remain poorly characterized. This study demonstrates that the alkaloid caulerpin (CAU)—a bioactive component of the green alga Caulerpa cylindracea that has invaded the entire Mediterranean basin—is an agonist of peroxisome proliferator-activated receptors (PPARs). Our interdisciplinary study started with the in silico prediction of the ligand-protein interaction, which was then validated by in vivo, ex vivo and in vitro assays. On the basis of these results, we candidate CAU as a causal factor of the metabolic and behavioural disorders observed in Diplodus sargus, a native edible fish of high ecological and commercial relevance, feeding on C. cylindracea. Moreover, given the considerable interest in PPAR activators for the treatment of relevant human diseases, our findings are also discussed in terms of a possible nutraceutical/pharmacological valorisation of the invasive algal biomasses, supporting an innovative strategy for conserving biodiversity as an alternative to unrealistic campaigns for the eradication of invasive pests.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jianan Zhang ◽  
Morgan E. Walker ◽  
Katherine Z. Sanidad ◽  
Hongna Zhang ◽  
Yanshan Liang ◽  
...  

AbstractEmerging research supports that triclosan (TCS), an antimicrobial agent found in thousands of consumer products, exacerbates colitis and colitis-associated colorectal tumorigenesis in animal models. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial β-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting an essential role of specific microbial proteins in TCS toxicity. Together, our results define a mechanism by which intestinal microbes contribute to the metabolic activation and gut toxicity of TCS, and highlight the importance of considering the contributions of the gut microbiota in evaluating the toxic potential of environmental chemicals.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tino Vollmer ◽  
Börje Ljungberg ◽  
Vera Jankowski ◽  
Joachim Jankowski ◽  
Griet Glorieux ◽  
...  

Abstract Identifying the key toxic players within an in-vivo toxic syndrome is crucial to develop targeted therapies. Here, we established a novel method that characterizes the effect of single substances by means of an ex-vivo incubation set-up. We found that primary human spermatozoa elicit a distinct motile response on a (uremic) toxic milieu. Specifically, this approach describes the influence of a bulk toxic environment (uremia) as well as single substances (uremic toxins) by real-time analyzing motile cellular behavior. We established the human spermatozoa-based toxicity testing (HSTT) for detecting single substance-induced toxicity to be used as a screening tool to identify in-vivo toxins. Further, we propose an application of the HSTT as a method of clinical use to evaluate toxin-removing interventions (hemodialysis).


2017 ◽  
Vol 14 (127) ◽  
pp. 20160992 ◽  
Author(s):  
B. Zeller-Plumhoff ◽  
T. Roose ◽  
G. F. Clough ◽  
P. Schneider

The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo . Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1880 ◽  
Author(s):  
Bread Cruz ◽  
André Oliveira ◽  
Lais Rosa Viana ◽  
Leisa Lopes-Aguiar ◽  
Rafael Canevarolo ◽  
...  

Background: Cancer-cachexia induces a variety of metabolic disorders, including skeletal muscle imbalance. Alternative therapy, as nutritional supplementation with leucine, shows a modulatory effect over tumour damage in vivo and in vitro. Method: Adult rats distributed into Control (C), Walker tumour-bearing (W), control fed a leucine-rich diet (L), and tumour-bearing fed a leucine-rich diet (WL) groups had the gastrocnemius muscle metabolomic and proteomic assays performed in parallel to in vitro assays. Results: W group presented an affected muscle metabolomic and proteomic profile mainly related to energy generation and carbohydrates catabolic processes, but leucine-supplemented group (WL) recovered the energy production. In vitro assay showed that cell proliferation, mitochondria number and oxygen consumption were higher under leucine effect than the tumour influence. Muscle proteomics results showed that the main affected cell component was mitochondria, leading to an impacted energy generation, including impairment in proteins of the tricarboxylic cycle and carbohydrates catabolic processes, which were modulated and improved by leucine treatment. Conclusion: In summary, we showed a beneficial effect of leucine upon mitochondria, providing information about the muscle glycolytic pathways used by this amino acid, where it can be associated with the preservation of morphometric parameters and consequent protection against the effects of cachexia.


1984 ◽  
Vol 99 (5) ◽  
pp. 1867-1871 ◽  
Author(s):  
M P Sheetz ◽  
R Chasan ◽  
J A Spudich

Sheetz and Spudich (1983, Nature (Lond.), 303:31-35) showed that ATP-dependent movement of myosin along actin filaments can be measured in vitro using myosin-coated beads and oriented actin cables from Nitella. To establish this in vitro movement as a quantitative assay and to understand better the basis for the movement, we have defined the factors that affect the myosin-bead velocity. Beads coated with skeletal muscle myosin move at a rate of 2-6 micron/s, depending on the myosin preparation. This velocity is independent of myosin concentration on the bead surface for concentrations above a critical value (approximately 20 micrograms myosin/2.5 X 10(9) beads of 1 micron in diameter). Movement is optimal between pH 6.8 and 7.5, at KCl concentrations less than 70 mM, at ATP concentrations greater than 0.1 mM, and at Mg2+ concentrations between 2 and 6 mM. From the temperature dependence of bead velocity, we calculate activation energies of 90 kJ/mol below 22 degrees C and 40 kJ/mol above 22 degrees C. Different myosin species move at their own characteristic velocities, and these velocities are proportional to their actin-activated ATPase activities. Further, the velocities of beads coated with smooth or skeletal muscle myosin correlate well with the known in vivo rates of myosin movement along actin filaments in these muscles. This in vitro assay, therefore, provides a rapid, reproducible method for quantitating the ATP-dependent movement of myosin molecules on actin.


Blood ◽  
2002 ◽  
Vol 99 (12) ◽  
pp. 4486-4493 ◽  
Author(s):  
Gregor Theilmeier ◽  
Carine Michiels ◽  
Erik Spaepen ◽  
Ingrid Vreys ◽  
Désiré Collen ◽  
...  

Platelets are thought to play a causal role during atherogenesis. Platelet-endothelial interactions in vivo and their molecular mechanisms under shear are, however, incompletely characterized. Here, an in vivo platelet homing assay was used in hypercholesterolemic rabbits to track platelet adhesion to plaque predilection sites. The role of platelet versus aortic endothelial cell (EC) activation was studied in an ex vivo flow chamber. Pathways of human platelet immobilization were detailed during in vitro perfusion studies. In rabbits, a 0.125% cholesterol diet induced no lesions within 3 months, but fatty streaks were found after 12 months. ECs at segmental arteries of 3- month rabbits expressed more von Willebrand factor (VWF) and recruited 5-fold more platelets than controls (P < .05, n = 5 and 4, respectively). The 3-month ostia had an increased likelihood to recruit platelets compared to control ostia (56% versus 18%, P < .0001, n = 89 and 63, respectively). Ex vivo, the adhesion of 3-month platelets to 3-month aortas was 8.4-fold increased compared to control studies (P < .01, n = 7 and 5, respectively). In vitro, endothelial VWF–platelet glycoprotein (GP) Ib and platelet P-selectin– endothelial P-selectin glycoprotein ligand 1 interactions accounted in combination for 83% of translocation and 90% of adhesion (P < .01, n = 4) of activated human platelets to activated human ECs. Platelet tethering was mainly mediated by platelet GPIbα, whereas platelet GPIIb/IIIa contributed 20% to arrest (P < .05). In conclusion, hypercholesterolemia primes platelets for recruitment via VWF, GPIbα, and P-selectin to lesion-prone sites, before lesions are detectable.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1366-1366
Author(s):  
Lisa M. Giammona ◽  
Eleftherios Papoutsakis ◽  
William M. Miller

Abstract Megakaryocyte (Mk) maturation includes the development of polyploid cells via endomitosis. In vitro models of Mk differentiation can be used to gain a better understanding of the molecular mechanisms controlling this process. However, it is challenging to achieve ploidy levels in cultured human cells that are as high as those observed in vivo. Others have recently reported the use of chemical inhibitors to increase Mk ploidy (Lannutti et al., Blood 105:3875, 2005). Here, we show that nicotinamide (NIC), a form of vitamin B3, enhances the normal process of Mk polyploidization and leads to both a greater fraction of high ploidy cells and a greater degree of polyploidization. Human mobilized peripheral blood CD34+ cells were cultured in serum-free medium supplemented with thrombopoietin (TPO) to induce Mk differentiation. Beginning on day 5 of culture, cells were treated with nicotinamide (3 and 6.25 mM) and monitored for DNA content, growth, apoptosis, and surface marker expression. NIC treatment resulted in a greater fraction of Mks with high ploidy (DNA content greater than or equal to 8N). The ploidy of NIC treated cells continued to increase over the duration of the 13-day culture, whereas the ploidy of untreated cells peaked at day 9. On day 13 (8 days of NIC exposure), the percentages of high ploidy Mks for the untreated, 3 mM NIC, and 6.25 mM NIC conditions were 23%, 48%, and 63%, respectively. Furthermore, cells treated with NIC reached ploidy levels of 64N and 32N for 6.25 and 3 mM NIC, respectively, compared to 16N for untreated cells. NIC-treated cells also displayed dramatic differences in morphology - characterized by an increase in cell size, the presence of a more highly lobated nucleus, and an increased frequency of proplatelet-forming cells. Nicotinamide is known to inhibit poly(ADP-ribose) polymerase (PARP) and Sir2, which are both NAD+ dependent enzymes. Preliminary experiments show that PARP activity is low in cultured Mks and is not affected by addition of 6.25 mM NIC. Continued exposure (beginning at day 5) to the PARP inhibitors (and nicotinamide analogs) 3-aminobenzamide (3-AB) and benzamide at concentrations of 1, 3, and 6.25 mM was toxic to cells in a dose dependent manner. Interestingly, high doses of NIC (25 and 50 mM) were also toxic to cells. Remarkably, while Mk polyploidization and apoptosis are typically correlated, the increase in DNA content observed for NIC-treated cells occurred without significantly affecting the percentage of apoptotic Mks (assessed by Annexin V staining). These data suggest that it may be possible to partially decouple Mk apoptosis and polyploidization. Furthermore, while 6.25 mM NIC inhibited cell proliferation by ~35%, total expansion of cells cultured with 3 mM NIC was similar to that of untreated cells. This, combined with similar Mk commitment, as defined by a similar percentage of CD41+ cells, resulted in a greater overall number of high ploidy Mks in cultures treated with NIC. Since there is a direct correlation between Mk DNA content and platelet production (Mattia et al., Blood 99:888, 2002), these results suggest a possible therapeutic benefit of NIC for the management of thrombocytopenia. Similarly, NIC could also be used as an additive to ex vivo Mk cultures destined for transplantation. Figure Figure


2004 ◽  
Vol 287 (5) ◽  
pp. R1270-R1275 ◽  
Author(s):  
Asensio A. Gonzalez ◽  
Reetu Kumar ◽  
Jacob D. Mulligan ◽  
Ashley J. Davis ◽  
Kurt W. Saupe

Although a diminished ability of tissues and organisms to tolerate stress is a clinically important hallmark of normal aging, little is known regarding its biochemical basis. Our goal was to determine whether age-associated changes in AMP-activated protein kinase (AMPK), a key regulator of cellular metabolism during the stress response, might contribute to the poor stress tolerance of aged cardiac and skeletal muscle. Basal AMPK activity and the degree of activation of AMPK by AMP and by in vivo hypoxemia (arterial Po2 of 39 mmHg) were measured in cardiac and skeletal muscle (gastrocnemius) from 5- and 24-mo-old C57Bl/6 mice. In the heart, neither basal AMPK activity nor its allosteric activation by AMP was affected by age. However, after 10 min of hypoxemia, the activity of α2-AMPK, but not α1-AMPK, was significantly higher in the hearts from old than from young mice ( P < 0.005), this difference being due to differences in phosphorylation of α2-AMPK. Significant activation of AMPK in the young hearts did not occur until 30 min of hypoxemia ( P < 0.01), stress that was poorly tolerated by the old mice (mortality = 67%). In contrast, AMPK activity in gastrocnemius muscle was unaffected by age or hypoxemia. We conclude that the age-associated decline in hypoxic tolerance in cardiac and skeletal muscle is not caused by changes in basal AMPK activity or a blunted AMPK response to hypoxia. Activation of AMPK by in vivo hypoxia is slower and more modest than might be predicted from in vitro and ex vivo experiments.


Sign in / Sign up

Export Citation Format

Share Document