scholarly journals Molecular Basis of Inflammation in the Pathogenesis of Cardiomyopathies

2020 ◽  
Vol 21 (18) ◽  
pp. 6462
Author(s):  
Emanuele Monda ◽  
Giuseppe Palmiero ◽  
Marta Rubino ◽  
Federica Verrillo ◽  
Federica Amodio ◽  
...  

Cardiomyopathies (CMPs) represent a diverse group of heart muscle diseases, grouped into specific morphological and functional phenotypes. CMPs are associated with mutations in sarcomeric and non-sarcomeric genes, with several suspected epigenetic and environmental mechanisms involved in determining penetrance and expressivity. The understanding of the underlying molecular mechanisms of myocardial diseases is fundamental to achieving a proper management and treatment of these disorders. Among these, inflammation seems to play an important role in the pathogenesis of CMPs. The aim of the present study is to review the current knowledge on the role of inflammation and the immune system activation in the pathogenesis of CMPs and to identify potential molecular targets for a tailored anti-inflammatory treatment.

2020 ◽  
Vol 19 ◽  
pp. 153473542093264
Author(s):  
Giammaria Fiorentini ◽  
Donatella Sarti ◽  
Cosmo Damiano Gadaleta ◽  
Marco Ballerini ◽  
Caterina Fiorentini ◽  
...  

The role of hyperthermia (HT) in cancer therapy and palliative care has been discussed for years in the literature. There are plenty of articles that show good feasibility of HT and its efficacy in terms of tumor response and survival improvements. Nevertheless, HT has never gained enough interest among oncologists to become a standard therapy in clinical practice. The main advantage of HT is the enhancement of chemotherapy (CHT), radiotherapy (RT), chemoradiotherapy (CRT), and immunotherapy benefits. This effect has been confirmed in several types of tumors: esophageal, gastrointestinal, pancreas, breast, cervix, head and neck, and bladder cancers, and soft tissue sarcoma. HT effects include oxygenation and perfusion changes, DNA repair inhibition and immune system activation as a consequence of new antigen exposure. The literature shows a wide variety of randomized, nonrandomized, and observational studies and both prospective and retrospective data to confirm the advantage of HT association to CHT and RT. There are still many ongoing trials on this subject. This article summarizes the available literature on HT in order to update the current knowledge on HT use in association with RT and/or CHT from 2010 up to 2019.


PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Alessandra Fucci ◽  
Tommaso Colangelo ◽  
Carolina Votino ◽  
Massimo Pancione ◽  
Lina Sabatino ◽  
...  

Tumors of the gastrointestinal tract are among the most frequent human malignancies and account for approximately 30% of cancer-related deaths worldwide. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that control diverse cellular functions such as proliferation, differentiation, and cell death. Owing to their involvement in so many processes, they play crucial roles also in the development and physiology of the gastrointestinal tract. Consistently, PPARs deregulation has been implicated in several pathophysiological conditions, including chronic inflammation and cancer development. This paper summarizes the current knowledge on the role that the various PPAR isoforms play in the pathogenesis of the esophageal, gastric, and intestinal cancer. Elucidation of the molecular mechanisms underlying PPARs' signaling pathways will provide insights into their possible use as predictive biomarkers in the initial stages of the process. In addition, this understanding will provide the basis for new molecular targets in cancer therapy and chemoprevention.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 629
Author(s):  
Jorge Gutiérrez-Cuevas ◽  
Ana Sandoval-Rodriguez ◽  
Alejandra Meza-Rios ◽  
Hugo Christian Monroy-Ramírez ◽  
Marina Galicia-Moreno ◽  
...  

Obesity is defined as excessive body fat accumulation, and worldwide obesity has nearly tripled since 1975. Excess of free fatty acids (FFAs) and triglycerides in obese individuals promote ectopic lipid accumulation in the liver, skeletal muscle tissue, and heart, among others, inducing insulin resistance, hypertension, metabolic syndrome, type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease (CVD). These diseases are promoted by visceral white adipocyte tissue (WAT) dysfunction through an increase in pro-inflammatory adipokines, oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and adverse changes in the gut microbiome. In the heart, obesity and T2D induce changes in substrate utilization, tissue metabolism, oxidative stress, and inflammation, leading to myocardial fibrosis and ultimately cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of carbohydrate and lipid metabolism, also improve insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. The purpose of this review is to provide an update on the molecular mechanisms involved in obesity-linked CVD pathophysiology, considering pro-inflammatory cytokines, adipokines, and hormones, as well as the role of oxidative stress, inflammation, and PPARs. In addition, cell lines and animal models, biomarkers, gut microbiota dysbiosis, epigenetic modifications, and current therapeutic treatments in CVD associated with obesity are outlined in this paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Yubo Sun ◽  
David R. Mauerhan ◽  
Nury M. Steuerwald ◽  
Jane Ingram ◽  
Jeffrey S. Kneisl ◽  
...  

Phosphocitrate (PC) inhibited calcium crystal-associated osteoarthritis (OA) in Hartley guinea pigs. However, the molecular mechanisms remain elusive. This study sought to determine PC targeted genes and the expression of select PC targeted genes in OA menisci to test hypothesis that PC exerts its disease modifying activity in part by reversing abnormal expressions of genes involved in OA. We found that PC downregulated the expression of numerous genes classified in immune response, inflammatory response, and angiogenesis, including chemokine (C-C motif) ligand 5, Fc fragment of IgG, low affinity IIIb receptor (FCGR3B), and leukocyte immunoglobulin-like receptor, subfamily B member 3 (LILRB3). In contrast, PC upregulated the expression of many genes classified in skeletal development, including collagen type II alpha1, fibroblast growth factor receptor 3 (FGFR3), and SRY- (sex determining region Y-) box 9 (SOX-9). Immunohistochemical examinations revealed higher levels of FCGR3B and LILRB3 and lower level of SOX-9 in OA menisci. These findings indicate that OA is a disease associated with immune system activation and decreased expression of SOX-9 gene in OA menisci. PC exerts its disease modifying activity on OA, at least in part, by targeting immune system activation and the production of extracellular matrix and selecting chondroprotective proteins.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1887 ◽  
Author(s):  
Francesco Bonollo ◽  
George N. Thalmann ◽  
Marianna Kruithof-de Julio ◽  
Sofia Karkampouna

Tumors strongly depend on their surrounding tumor microenvironment (TME) for growth and progression, since stromal elements are required to generate the optimal conditions for cancer cell proliferation, invasion, and possibly metastasis. Prostate cancer (PCa), though easily curable during primary stages, represents a clinical challenge in advanced stages because of the acquisition of resistance to anti-cancer treatments, especially androgen-deprivation therapies (ADT), which possibly lead to uncurable metastases such as those affecting the bone. An increasing number of studies is giving evidence that prostate TME components, especially cancer-associated fibroblasts (CAFs), which are the most abundant cell type, play a causal role in PCa since the very early disease stages, influencing therapy resistance and metastatic progression. This is highlighted by the prognostic value of the analysis of stromal markers, which may predict disease recurrence and metastasis. However, further investigations on the molecular mechanisms of tumor–stroma interactions are still needed to develop novel therapeutic approaches targeting stromal components. In this review, we report the current knowledge of the characteristics and functions of the stroma in prostate tumorigenesis, including relevant discussion of normal prostate homeostasis, chronic inflammatory conditions, pre-neoplastic lesions, and primary and metastatic tumors. Specifically, we focus on the role of CAFs, to point out their prognostic and therapeutic potential in PCa.


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 409 ◽  
Author(s):  
Ion Cristóbal ◽  
Marta Sanz-Álvarez ◽  
Melani Luque ◽  
Cristina Caramés ◽  
Federico Rojo ◽  
...  

Hepatoblastoma is the most common hepatic malignancy during childhood. However, little is still known about the molecular mechanisms that govern the development of this disease. This review is focused on the recent advances regarding the study of microRNAs in hepatoblastoma and their substantial contribution to improv our knowledge of the pathogenesis of this disease. We show here that miRNAs represent valuable tools to identify signaling pathways involved in hepatoblastoma progression as well as useful biomarkers and novel molecular targets to develop alternative therapeutic strategies in this disease.


2018 ◽  
Vol 132 (14) ◽  
pp. 1529-1543 ◽  
Author(s):  
Simona Ronchetti ◽  
Graziella Migliorati ◽  
Stefano Bruscoli ◽  
Carlo Riccardi

An established body of knowledge and clinical practice has argued in favor of the use of glucocorticoids in various chronic inflammatory and autoimmune diseases. However, the very well-known adverse effects associated with their treatment hampers continuation of therapy with glucocorticoids. Analyses of the molecular mechanisms underlying the actions of glucocorticoids have led to the discovery of several mediators that add complexity and diversity to the puzzling world of these hormones and anti-inflammatory drugs. Such mediators hold great promise as alternative pharmacologic tools to be used as anti-inflammatory drugs with the same properties as glucocorticoids, but avoiding their metabolic side effects. This review summarizes findings about the molecular targets and mediators of glucocorticoid function.


Glycobiology ◽  
2020 ◽  
Author(s):  
Kaitlyn A Dorsett ◽  
Michael P Marciel ◽  
Jihye Hwang ◽  
Katherine E Ankenbauer ◽  
Nikita Bhalerao ◽  
...  

Abstract The ST6GAL1 sialyltransferase, which adds α2–6 linked sialic acids to N-glycosylated proteins, is overexpressed in a wide range of human malignancies. Recent studies have established the importance of ST6GAL1 in promoting tumor cell behaviors such as invasion, resistance to cell stress, and chemoresistance. Furthermore, ST6GAL1 activity has been implicated in imparting cancer stem cell characteristics. However, despite the burgeoning interest in the role of ST6GAL1 in the phenotypic features of tumor cells, insufficient attention has been paid to the molecular mechanisms responsible for ST6GAL1 upregulation during neoplastic transformation. Evidence suggests that these mechanisms are multifactorial, encompassing genetic, epigenetic, transcriptional, and post-translational regulation. The purpose of this review is to summarize current knowledge regarding the molecular events that drive enriched ST6GAL1 expression in cancer cells.


Lupus ◽  
1998 ◽  
Vol 7 (2_suppl) ◽  
pp. 23-28 ◽  
Author(s):  
J Amout ◽  
J Vermylen

There is accumulating evidence showing that lupus anticoagulants (LA) are more strongly associated with thrombosis than anticardiolipin antibodies. In addition, indirect evidence has been presented indicating that β2GPI-dependent LA are more strongly associated with thrombosis than prothrombin-dependent LA. From this, one may assume that anti-β2GPl antibodies with LA activity are more pathogenic than anti-β2GPI antibodies without LA activity. Therefore, it is of the utmost importance to understand the molecular basis on which some anti-β2GPI antibodies behave as LA. In this presentation, the current knowledge on the interaction of β2GPI with phospholipids and with anti-β2GPI antibodies is reviewed and an integrated model for the anti-β2GPI - dependent LA activity is proposed with implications for a pathogenic role of these particular antibodies.


Sign in / Sign up

Export Citation Format

Share Document