scholarly journals Multi-Omics Analysis of Small RNA, Transcriptome, and Degradome in T. turgidum—Regulatory Networks of Grain Development and Abiotic Stress Response

2020 ◽  
Vol 21 (20) ◽  
pp. 7772
Author(s):  
Haipei Liu ◽  
Amanda J. Able ◽  
Jason A. Able

Crop reproduction is highly sensitive to water deficit and heat stress. The molecular networks of stress adaptation and grain development in tetraploid wheat (Triticum turgidum durum) are not well understood. Small RNAs (sRNAs) are important epigenetic regulators connecting the transcriptional and post-transcriptional regulatory networks. This study presents the first multi-omics analysis of the sRNAome, transcriptome, and degradome in T. turgidum developing grains, under single and combined water deficit and heat stress. We identified 690 microRNAs (miRNAs), with 84 being novel, from 118 sRNA libraries. Complete profiles of differentially expressed miRNAs (DEMs) specific to genotypes, stress types, and different reproductive time-points are provided. The first degradome sequencing report for developing durum grains discovered a significant number of new target genes regulated by miRNAs post-transcriptionally. Transcriptome sequencing profiled 53,146 T. turgidum genes, swith differentially expressed genes (DEGs) enriched in functional categories such as nutrient metabolism, cellular differentiation, transport, reproductive development, and hormone transduction pathways. miRNA–mRNA networks that affect grain characteristics such as starch synthesis and protein metabolism were constructed on the basis of integrated analysis of the three omics. This study provides a substantial amount of novel information on the post-transcriptional networks in T. turgidum grains, which will facilitate innovations for breeding programs aiming to improve crop resilience and grain quality.

2020 ◽  
Vol 21 (17) ◽  
pp. 6017 ◽  
Author(s):  
Haipei Liu ◽  
Amanda J. Able ◽  
Jason A. Able

Water-deficit and heat stress negatively impact crop production. Mechanisms underlying the response of durum wheat to such stresses are not well understood. With the new durum wheat genome assembly, we conducted the first multi-omics analysis with next-generation sequencing, providing a comprehensive description of the durum wheat small RNAome (sRNAome), mRNA transcriptome, and degradome. Single and combined water-deficit and heat stress were applied to stress-tolerant and -sensitive Australian genotypes to study their response at multiple time-points during reproduction. Analysis of 120 sRNA libraries identified 523 microRNAs (miRNAs), of which 55 were novel. Differentially expressed miRNAs (DEMs) were identified that had significantly altered expression subject to stress type, genotype, and time-point. Transcriptome sequencing identified 49,436 genes, with differentially expressed genes (DEGs) linked to processes associated with hormone homeostasis, photosynthesis, and signaling. With the first durum wheat degradome report, over 100,000 transcript target sites were characterized, and new miRNA-mRNA regulatory pairs were discovered. Integrated omics analysis identified key miRNA-mRNA modules (particularly, novel pairs of miRNAs and transcription factors) with antagonistic regulatory patterns subject to different stresses. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis revealed significant roles in plant growth and stress adaptation. Our research provides novel and fundamental knowledge, at the whole-genome level, for transcriptional and post-transcriptional stress regulation in durum wheat.


2020 ◽  
Author(s):  
Tao Jiang ◽  
Meide Zhang ◽  
Chunxiu Wen ◽  
Xiaoliang Xie ◽  
Wei Tian ◽  
...  

Abstract Background: The study objectives were to reveal the anthocyanin biosynthesis metabolic pathway in white and purple flowers of Salvia miltiorrhiza using metabolomics and transcriptomics, to identify different anthocyanin metabolites, and to analyze the differentially expressed genes involved in anthocyanin biosynthesis . Results: We analyzed the metabolomics and transcriptomics data of Salvia miltiorrhiza flowers. A total of 1994 differentially expressed genes and 84 flavonoid metabolites were identified between the white and purple flowers of Salvia miltiorrhiza . Integrated analysis of transcriptomic and metabolomics showed that cyanidin 3,5-O-diglucoside, malvidin 3,5-diglucoside, and cyanidin 3-O-galactoside were mainly responsible for the purple flower color of Salvia miltiorrhiza. A total of 100 unigenes encoding 10 enzymes were identified as candidate genes involved in anthocyanin biosynthesis in Salvia miltiorrhiza flowers. The low expression of the ANS gene decreased the anthocyanin content but enhanced the accumulation of flavonoids in Salvia miltiorrhiza flowers. Conclusions: Our results provide valuable information on the anthocyanin metabolites and the candidate genes involved in the anthocyanin biosynthesis pathways in Salvia miltiorrhiza .


2020 ◽  
Author(s):  
Tianyue Yu ◽  
Yan-Hong Yong ◽  
Jun-yu Li ◽  
Biao Fang ◽  
Can-ying Hu ◽  
...  

Abstract Background : With evidence of warming climates, it is important to understand the effects of heat stress in farm animals in order to minimize production losses. Studying the changes in the brain proteome induced by heat stress may aid in understanding how heat stress affects brain function. The hypothalamus is a critical region in the brain that controls the pituitary gland, which is responsible for the secretion of several important hormones. In this study, we examined the hypothalamic protein profile of 10 pigs (15 ± 1 kg body weight), with five subjected to heat stress (35 ± 1 °C; relative humidity = 90%) and five acting as controls (28 ± 3°C; RH = 90%). Result: The isobaric tags for relative and absolute quantification (iTRAQ) analysis of the hypothalamus identified 1710 peptides corresponding to 360 proteins, including 295 differentially expressed proteins (DEPs), 148 of which were up-regulated and 147 down-regulated, in heat-stressed animals. The Ingenuity Pathway Analysis (IPA) software predicted 30 canonical pathways, four functional groups, and four regulatory networks of interest. The DEPs were mainly concentrated in the cytoskeleton of the pig hypothalamus during heat stress. Conclusions: In this study, heat stress significantly increased the body temperature and reduced daily gain of body weight in pigs. Furthermore, we identified 295 differentially expressed proteins, 147 of which were down-regulated and 148 up-regulated in hypothalamus of heat stressed pigs. The IPA showed that the DEPs identified in the study are involved in cell death and survival, cellular assembly and organization, and cellular function and maintenance, in relation to neurological disease, metabolic disease, immunological disease, inflammatory disease, and inflammatory response. We hypothesize that a malfunction of the hypothalamus may destroy the host physical and immune function, resulting in decreased growth performance and immunosuppression in heat stressed pigs.


2019 ◽  
Vol 20 (16) ◽  
pp. 4067 ◽  
Author(s):  
Andrea Angius ◽  
Paolo Uva ◽  
Giovanna Pira ◽  
Maria Rosaria Muroni ◽  
Giovanni Sotgiu ◽  
...  

Colorectal cancer (CRC) ranks as the most frequent carcinoma worldwide. CRC patients show strong prognostic differences and responses to treatment, and 20% have incurable metastatic disease at diagnosis. We considered it essential to investigate mechanisms that control cellular regulatory networks, such as the miRNA–mRNA interaction, known to be involved in cancer pathogenesis. We conducted a human miRNome analysis by TaqMan low density array, comparing CRC to normal colon tissue (NCT, and experimentally identified gene targets of miRNAs deregulated, by anti-correlation analysis, with the CRC whole-transcriptome profile obtained from RNASeq experiments. We identified an integrated signature of 20 deregulated miRNAs in CRC. Enrichment analyses of the gene targets controlled by these miRNAs brought to light 25 genes, members of pathways known to lead to cell growth and death (CCND1, NKD1, FZD3, MAD2L1, etc.), such as cell metabolism (ACSL6, PRPS1-2). A screening of prognosis-mediated miRNAs underlined that the overexpression of miR-224 promotes CRC metastasis, and is associated with high stage and poor survival. These findings suggest that the biology and progression of CRC depend on deregulation of multiple miRNAs that cause a complex dysfunction of cellular molecular networks. Our results have further established miRNA–mRNA interactions and defined multiple pathways involved in CRC pathogenesis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Min Cao ◽  
Xu Yan ◽  
Baofeng Su ◽  
Ning Yang ◽  
Qiang Fu ◽  
...  

Sebastes schlegelii, an important aquaculture species, has been widely cultured in East Asian countries. With the increase in the cultivation scale, various diseases have become major threats to the industry. Evidence has shown that non-coding RNAs (ncRNAs) have remarkable functions in the interactions between pathogens and their hosts. However, little is known about the mechanisms of circular RNAs (circRNAs) and coding RNAs in the process of preventing pathogen infection in the intestine in teleosts. In this study, we aimed to uncover the global landscape of mRNAs, circRNAs, and microRNAs (miRNAs) in response to Edwardsiella tarda infection at different time points (0, 2, 6, 12, and 24 h) and to construct regulatory networks for exploring the immune regulatory mechanism in the intestine of S. schlegelii. In total, 1,794 mRNAs, 87 circRNAs, and 79 miRNAs were differentially expressed. The differentially expressed RNAs were quantitatively validated using qRT-PCR. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that most of the differentially expressed mRNA genes and the target genes of ncRNAs were related to immune signaling pathways, such as the NF-κB signal pathway, pathogen recognition receptors related to signaling pathways (Toll-like receptors and Nod-like receptors), and the chemokine signaling pathway. Based on these differentially expressed genes, 624 circRNA-miRNA pairs and 2,694 miRNA-mRNA pairs were predicted using the miRanda software. Integrated analyses generated 25 circRNA-miRNA-mRNA interaction networks. In a novel_circ_0004195/novel-530/IκB interaction network, novel_530 was upregulated, while its two targets, novel_circ_0004195 and IκB, were downregulated after E. tarda infection. In addition, two circRNA-miRNA-mRNA networks related to apoptosis (novel_circ_0003210/novel_152/apoptosis-stimulating of p53 protein 1) and interleukin (novel_circ_0001907/novel_127/interleukin-1 receptor type 2) were also identified in our study. We thus speculated that the downstream NF-κB signaling pathway, p53 signaling pathway, and apoptosis pathway might play vital roles in the immune response in the intestine of S. schlegelii. This study revealed a landscape of RNAs in the intestine of S. schlegelii during E. tarda infection and provided clues for further study on the immune mechanisms and signaling networks based on the circRNA-miRNA-mRNA axis in S. schlegelii.


2009 ◽  
Vol 21 (9) ◽  
pp. 78
Author(s):  
W. Kong ◽  
R. Nowak ◽  
C. T. Roberts ◽  
J. A. Owens

Placental functional development is characterised by dynamic and co-ordinated changes in expression of genes that drive invasion, differentiation and growth. These changes may arise in part from altered expression of microRNAs (miRNAs) via their regulatory networks. MiRNAs are short, single-stranded, non-coding RNAs involved in the post-transcriptional repression of gene expression. MiRNAs bind to complementary sites in the 3'UTR of target mRNAs to repress or silence translation. MiRNAs have been detected in the mammalian placenta, but their patterns of expression throughout pregnancy have not been systematically characterized. Using microarrays, miRNA gene expression was compared at two stages (6–8 weeks, 10–12 weeks) in early gestation, in chorionic villi of human placentas (term ~40 weeks). Putative and validated targets of differentially expressed miRNAs were extracted from freely accessible databases, miRBase [1], PicTar [2], TargetScan [3] and miRecords [4]. 15 miRNAs were differentially expressed between these gestational ages (p<0.05). 11 of these miRNAs were upregulated in 10–12 week villi and 4 were downregulated. Many of the differentially expressed miRNAs are members of the same polycistronic clusters, suggesting that these miRNAs may be co-expressed. Shared targets of differentially expressed miRNAs from the same clusters were assessed using Ingenuity Pathways Analysis, to search for significantly represented molecular networks. All downregulated miRNAs at 10–12 weeks shared 35 putative targets and fell into 1 of 2 clusters, on chromosome 13 or X. Previously validated targets include PTEN [5], Notch1 [6], VEGFA [7], CDKN2A [8] and DHFR [9] . Six of the upregulated miRNAs at 10–12 weeks are members of 3 clusters on chromosome 19, 9 and X. Networks targeted by these cluster members include PTEN, HIF1α and IL-12 signalling. Together all of these processes are active and important in early placentation and their predicted targeting by differentially expressed miRNAs is consistent with an important role in placental development.


2021 ◽  
Vol 22 (6) ◽  
pp. 3156
Author(s):  
Qian Wu ◽  
Xianhui Ning ◽  
Li Sun

Megalocytivirus is an important viral pathogen to many farmed fishes, including Japanese flounder (Paralichthys olivaceus). In this study, we examined megalocytivirus-induced RNA responses in the spleen of flounder by high-throughput sequencing and integrative analysis of various RNA-seq data. A total of 1327 microRNAs (miRNAs), including 368 novel miRNAs, were identified, among which, 171 (named DEmiRs) exhibited significantly differential expressions during viral infection in a time-dependent manner. For these DEmiRs, 805 differentially expressed target mRNAs (DETmRs) were predicted, whose expressions not only significantly changed after megalocytivirus infection but were also negatively correlated with their paired DEmiRs. Integrative analysis of immune-related DETmRs and their target DEmiRs identified 12 hub DEmiRs, which, together with their corresponding DETmRs, formed an interaction network containing 84 pairs of DEmiR and DETmR. In addition to DETmRs, 19 DEmiRs were also found to regulate six key immune genes (mRNAs) differentially expressed during megalocytivirus infection, and together they formed a network consisting of 21 interactive miRNA-messenger RNA (mRNA) pairs. Further analysis identified 9434 circular RNAs (circRNAs), 169 of which (named DEcircRs) showed time-specific and significantly altered expressions during megalocytivirus infection. Integrated analysis of the DETmR-DEmiR and DEcircR-DEmiR interactions led to the identification of a group of competing endogenous RNAs (ceRNAs) constituted by interacting triplets of circRNA, miRNA, and mRNA involved in antiviral immunity. Together these results indicate that complicated regulatory networks of different types of non-coding RNAs and coding RNAs are involved in megalocytivirus infection.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Haipei Liu ◽  
Amanda J. Able ◽  
Jason A. Able

Abstract In Mediterranean environments, water deficiency and heat during reproduction severely limit cereal crop production. Our research investigated the effects of single and combined pre-anthesis water-deficit stress and post-anthesis heat stress in ten Australian durum genotypes, providing a systematic evaluation of stress response at the molecular, physiological, grain quality and yield level. We studied leaf physiological traits at different reproductive stages, evaluated the grain yield and quality, and the associations among them. We profiled the expression dynamics of two durum microRNAs and their protein-coding targets (auxin response factors and heat shock proteins) involved in stress adaptation. Chlorophyll content, stomatal conductance and leaf relative water content were mostly reduced under stress, however, subject to the time-point and genotype. The influence of stress on grain traits (e.g., protein content) also varied considerably among the genotypes. Significant positive correlations between the physiological traits and the yield components could be used to develop screening strategies for stress improvement in breeding. Different expression patterns of stress-responsive microRNAs and their targets in the most stress-tolerant and most stress-sensitive genotype provided some insight into the complex defense molecular networks in durum. Overall, genotypic performance observed indicates that different stress-coping strategies are deployed by varieties under various stresses.


2020 ◽  
Author(s):  
Tianyue Yu ◽  
Yan-Hong Yong ◽  
Jun-yu Li ◽  
Biao Fang ◽  
Can-ying Hu ◽  
...  

Abstract Background : With evidence of warming climates, it is important to understand the effects of heat stress in farm animals in order to minimize production losses. Studying the changes in the brain proteome induced by heat stress may aid in understanding how heat stress affects brain function. The hypothalamus is a critical region in the brain that controls the pituitary gland, which is responsible for the secretion of several important hormones. In this study, we examined the hypothalamic protein profile of 10 pigs (15 ± 1 kg body weight), with five subjected to heat stress (35 ± 1 °C; relative humidity = 90%) and five acting as controls (28 ± 3°C; RH = 90%). Result: The isobaric tags for relative and absolute quantification (iTRAQ) analysis of the hypothalamus identified 1710 peptides corresponding to 360 proteins, including 295 differentially expressed proteins (DEPs), 148 of which were up-regulated and 147 down-regulated, in heat-stressed animals. The Ingenuity Pathway Analysis (IPA) software predicted 30 canonical pathways, four functional groups, and four regulatory networks of interest. The DEPs were mainly concentrated in the cytoskeleton of the pig hypothalamus during heat stress. Conclusions: In this study, heat stress significantly increased the body temperature and reduced daily gain of body weight in pigs. Furthermore, we identified 295 differentially expressed proteins, 147 of which were down-regulated and 148 up-regulated in hypothalamus of heat stressed pigs. The IPA showed that the DEPs identified in the study are involved in cell death and survival, cellular assembly and organization, and cellular function and maintenance, in relation to neurological disease, metabolic disease, immunological disease, inflammatory disease, and inflammatory response. We hypothesize that a malfunction of the hypothalamus may destroy the host physical and immune function, resulting in decreased growth performance and immunosuppression in heat stressed pigs.


Sign in / Sign up

Export Citation Format

Share Document