scholarly journals Integrated metabolomic and transcriptomic analysis of the anthocyanin regulatory networks in Salvia miltiorrhiza Bge. flowers

2020 ◽  
Author(s):  
Tao Jiang ◽  
Meide Zhang ◽  
Chunxiu Wen ◽  
Xiaoliang Xie ◽  
Wei Tian ◽  
...  

Abstract Background: The study objectives were to reveal the anthocyanin biosynthesis metabolic pathway in white and purple flowers of Salvia miltiorrhiza using metabolomics and transcriptomics, to identify different anthocyanin metabolites, and to analyze the differentially expressed genes involved in anthocyanin biosynthesis . Results: We analyzed the metabolomics and transcriptomics data of Salvia miltiorrhiza flowers. A total of 1994 differentially expressed genes and 84 flavonoid metabolites were identified between the white and purple flowers of Salvia miltiorrhiza . Integrated analysis of transcriptomic and metabolomics showed that cyanidin 3,5-O-diglucoside, malvidin 3,5-diglucoside, and cyanidin 3-O-galactoside were mainly responsible for the purple flower color of Salvia miltiorrhiza. A total of 100 unigenes encoding 10 enzymes were identified as candidate genes involved in anthocyanin biosynthesis in Salvia miltiorrhiza flowers. The low expression of the ANS gene decreased the anthocyanin content but enhanced the accumulation of flavonoids in Salvia miltiorrhiza flowers. Conclusions: Our results provide valuable information on the anthocyanin metabolites and the candidate genes involved in the anthocyanin biosynthesis pathways in Salvia miltiorrhiza .

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai Xing ◽  
Kejun Wang ◽  
Hong Ao ◽  
Shaokang Chen ◽  
Zhen Tan ◽  
...  

Abstract Fatness traits are important in pigs because of their implications for fattening efficiency, meat quality, reproductive performance and immunity. Songliao black pigs and Landrace pigs show important differences in production and meat quality traits, including fatness and muscle growth. Therefore, we used a high-throughput massively parallel RNA-seq approach to identify genes differentially expressed in backfat tissue between these two breeds (six pigs in each). An average of 37.87 million reads were obtained from the 12 samples. After statistical analysis of gene expression data by edgeR, a total of 877 differentially expressed genes were detected between the two pig breeds, 205 with higher expression and 672 with lower expression in Songliao pigs. Candidate genes (LCN2, CES3, DGKB, OLR1, LEP, PGM1, PCK1, ACACB, FADS1, FADS2, MOGAT2, SREBF1, PPARGC1B) with known effects on fatness traits were included among the DEGs. A total of 1071 lncRNAs were identified, and 85 of these lncRNAs were differentially expressed, including 53 up-regulated and 32 down-regulated lncRNAs, respectively. The differentially expressed genes and lncRNAs involved in glucagon signaling pathway, glycolysis/gluconeogenesis, insulin signaling pathway, MAPK signaling pathway and so on. Integrated analysis potential trans-regulating or cis-regulating relation between DEGs and DE lncRNAs, suggested lncRNA MSTRG.2479.1 might regulate the expressed level of VLDLR affecting porcine fat metabolism. These results provide a number of candidate genes and lncRNAs potentially involved in porcine fat deposition and provide a basis for future research on the molecular mechanisms underlying in fat deposition.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ali Raza ◽  
Wei Su ◽  
Muhammad Azhar Hussain ◽  
Sundas Saher Mehmood ◽  
Xuekun Zhang ◽  
...  

Rapeseed (Brassica napus L.) is an important oilseed crop in the world. Its productivity is significantly influenced by numerous abiotic stresses, including cold stress (CS). Consequently, enhancement in CS tolerance is becoming an important area for agricultural investigation and crop improvement. Therefore, the current study aimed to identify the stress-responsive genes, metabolites, and metabolic pathways based on a combined transcriptome and metabolome analysis to understand the CS responses and tolerance mechanisms in the cold-tolerant (C18) and cold-sensitive (C6) rapeseed varieties. Based on the metabolome analysis, 31 differentially accumulated metabolites (DAMs) were identified between different comparisons of both varieties at the same time points. From the transcriptome analysis, 2,845, 3,358, and 2,819 differentially expressed genes (DEGs) were detected from the comparison of C6-0 vs. C18-0, C6-1 vs. C18-1, and C6-7 vs. C18-7. By combining the transcriptome and metabolome data sets, we found that numerous DAMs were strongly correlated with several differentially expressed genes (DEGs). A functional enrichment analysis of the DAMs and the correlated DEGs specified that most DEGs and DAMs were mainly enriched in diverse carbohydrates and amino acid metabolisms. Among them, starch and sucrose metabolism and phenylalanine metabolism were significantly enriched and played a vital role in the CS adaption of rapeseed. Six candidate genes were selected from the two pathways for controlling the adaption to low temperature. In a further validation, the T-DNA insertion mutants of their Arabidopsis homologous, including 4cl3, cel5, fruct4, ugp1, axs1, and bam2/9, were characterized and six lines differed significantly in levels of freezing tolerance. The outcome of the current study provided new prospects for the understanding of the molecular basis of CS responses and tolerance mechanisms in rapeseed and present a set of candidate genes for use in improving CS adaptability in the same plant.


2009 ◽  
Vol 39 (2) ◽  
pp. 85-99 ◽  
Author(s):  
M. Carey Satterfield ◽  
Gwonhwa Song ◽  
Kelli J. Kochan ◽  
Penny K. Riggs ◽  
Rebecca M. Simmons ◽  
...  

Establishment of pregnancy in ruminants requires blastocyst growth to form an elongated conceptus that produces interferon tau, the pregnancy recognition signal, and initiates implantation. Blastocyst growth and development requires secretions from the uterine endometrium. An early increase in circulating concentrations of progesterone (P4) stimulates blastocyst growth and elongation in ruminants. This study utilized sheep as a model to identify candidate genes and regulatory networks in the endometrium that govern preimplantation blastocyst growth and development. Ewes were treated daily with either P4 or corn oil vehicle from day 1.5 after mating to either day 9 or day 12 of pregnancy when endometrium was obtained by hysterectomy. Microarray analyses revealed many differentially expressed genes in the endometria affected by day of pregnancy and early P4 treatment. In situ hybridization analyses revealed that many differentially expressed genes were expressed in a cell-specific manner within the endometrium. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to identify functional groups of genes and biological processes in the endometrium that are associated with growth and development of preimplantation blastocysts. Notably, biological processes affected by day of pregnancy and/or early P4 treatment included lipid biosynthesis and metabolism, angiogenesis, transport, extracellular space, defense and inflammatory response, proteolysis, amino acid transport and metabolism, and hormone metabolism. This transcriptomic data provides novel insights into the biology of endometrial function and preimplantation blastocyst growth and development in sheep.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 823
Author(s):  
Xiayi Liu ◽  
Xiaochen Wang ◽  
Jing Liu ◽  
Xiangyu Wang ◽  
Haigang Bao

The Tibet chicken (Gallus gallus) lives on the Qinghai–Tibet Plateau and adapts to the hypoxic environment very well. The objectives of this study was to obtain candidate genes associated with hypoxia adaptation in the Tibet chicken embryos. In the present study, we used the fixation index (Fst) and cross population extended haplotype homozygosity (XPEHH) statistical methods to detect signatures of positive selection of the Tibet chicken, and analyzed the RNA sequencing data from the embryonic liver and heart with HISAT, StringTie and Ballgown for differentially expressed genes between the Tibet chicken and White leghorn (Gallus gallus, a kind of lowland chicken) embryos hatched under hypoxia condition. Genes which were screened out by both selection signature analysis and RNA sequencing analysis could be regarded as candidate genes for hypoxia adaptation of chicken embryos. We screened out 1772 genes by XPEHH and 601 genes by Fst, and obtained 384 and 353 differentially expressed genes in embryonic liver and heart, respectively. Among these genes, 89 genes were considered as candidate genes for hypoxia adaptation in chicken embryos. ARNT, AHR, GSTK1 and FGFR1 could be considered the most important candidate genes. Our findings provide references to elucidate the molecular mechanism of hypoxia adaptation in Tibet chicken embryos.


2016 ◽  
Vol 33 (8) ◽  
pp. 1017-1025 ◽  
Author(s):  
Erika M. Munch ◽  
Amy E. Sparks ◽  
Jesus Gonzalez Bosquet ◽  
Lane K. Christenson ◽  
Eric J. Devor ◽  
...  

2019 ◽  
Author(s):  
Leah J Radeke ◽  
Michael Herman

Abstract Background: Stenotrophomonas maltophilia is an emerging nosocomial pathogen that causes infection in immunocompromised patients. S. maltophilia isolates are genetically diverse, contain diverse virulence factors, and are variably pathogenic within several host species. Members of the Stenotrophomonas genus are part of the native microbiome of C. elegans , being found in greater relative abundance within the worm than its environment, suggesting that these bacteria accumulate within C. elegans . Thus, study of the C. elegans-Stenotrophomonas interaction is of both medical and ecological significance. To identify host defense mechanisms, we analyzed the C. elegans transcriptomic response to S. maltophilia strains of varying pathogenicity: K279a, an avirulent clinical isolate, JCMS, a virulent strain isolated in association with soil nematodes near Manhattan, KS, and JV3, an even more virulent environmental isolate. Results: Overall, we found 145 genes that are commonly differentially expressed in response to pathogenic S. maltophilia strains, 89% of which are upregulated, with many even further upregulated in response to JV3 as compared to JCMS. There are many more JV3-specific differentially expressed genes (225, 11% upregulated) than JCMS-specific differentially expressed genes (14, 86% upregulated), suggesting JV3 has unique pathogenic mechanisms that could explain its increased virulence. We used connectivity within a gene network model to choose pathogen-specific and strain-specific differentially expressed candidate genes for functional analysis. Mutations in 13 of 22 candidate genes caused significant differences in C. elegans survival in response to at least one S. maltophilia strain, although not always the strain that induced differential expression, suggesting a dynamic response to varying levels of pathogenicity. Conclusions: Variation in observed pathogenicity and differences in host transcriptional responses to S. maltophilia strains reveal that strain-specific mechanisms play important roles in S. maltophilia pathogenesis. Furthermore, utilizing bacteria closely related to strains found in C. elegans natural environment provides a more realistic interaction for understanding host-pathogen response.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1024
Author(s):  
Yan Hong ◽  
Mengling Li ◽  
Silan Dai

The generation of chrysanthemum (Chrysanthemum × morifolium) flower color is mainly attributed to the accumulation of anthocyanins. Light is one of the key environmental factors that affect the anthocyanin biosynthesis, but the deep molecular mechanism remains elusive. In our previous study, a series of light-induced structural and regulatory genes involved in the anthocyanin biosynthetic pathway in the chrysanthemum were identified using RNA sequencing. In the present study, differentially expressed proteins that are in response to light with the capitulum development of the chrysanthemum ‘Purple Reagan’ were further identified using isobaric tags for relative and absolute quantification (iTRAQ) technique, and correlation between the proteomic and the transcriptomic libraries was analyzed. In general, 5106 raw proteins were assembled based on six proteomic libraries (three capitulum developmental stages × two light treatments). As many as 160 proteins were differentially expressed between the light and the dark libraries with 45 upregulated and 115 downregulated proteins in response to shading. Comparative analysis between the pathway enrichment and the gene expression patterns indicated that most of the proteins involved in the anthocyanin biosynthetic pathway were downregulated after shading, which was consistent with the expression patterns of corresponding encoding genes; while five light-harvesting chlorophyll a/b-binding proteins were initially downregulated after shading, and their expressions were enhanced with the capitulum development thereafter. As revealed by correlation analysis between the proteomic and the transcriptomic libraries, GDSL esterase APG might also play an important role in light signal transduction. Finally, a putative mechanism of light-induced anthocyanin biosynthesis in the chrysanthemum was proposed. This study will help us to clearly identify light-induced proteins associated with flower color in the chrysanthemum and to enrich the complex mechanism of anthocyanin biosynthesis for use in cultivar breeding.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A763-A764
Author(s):  
Raffaella Rossetti ◽  
Marco Fornili ◽  
Silvia Moleri ◽  
Ilaria Ferrari ◽  
Davide Gentilini ◽  
...  

Abstract Primary Ovarian Insufficiency (POI) is a female fertility disorder which affects 1% of women before 40 years of age and manifests with amenorrhea, elevation of serum gonadotrophins and low estrogens. POI has a strong genetic component with incomplete penetrance. Several candidate genes have been described so far, however, its etiopathogenesis is mostly unknown. In order to discover the POI-related causative mechanisms, microarray transcriptome analysis in human granulosa cells (hGCs) stimulated with recombinant human BMP15 (rhBMP15) and next generation sequencing analysis (NGS) on the identified differentially expressed genes in a selected group of patients with POI were conducted on NGS Illumina platform. In the present study, we obtained 19 differentially expressed genes upon rhBMP15 stimulation in hGCs. Results: showed that all identified genes were upregulated and associated to pluripotency, inhibition of apoptosis, cell proliferation, BMP signaling and apoptosis. Moreover, we identified nine POI patients bearing six rare variants in 5 of the BMP15-induced genes (SAMD11, SMAD6, ID1, USP35, GPCR137C). The BMP15-induced transcriptome analysis in hGCs contributed the understanding of BMP15 role as transcriptional regulator, through the activation of transcriptional repressors, by inducing pathways inhibiting the ovarian follicle maturation, thus possibly maintaining an undifferentiated state of hGCs. These findings lead to the identification of novel candidate genes for POI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haihong Zhang ◽  
Yanli Wang ◽  
Jinghui Feng ◽  
Shuya Wang ◽  
Yan Wang ◽  
...  

Systemic lupus erythematosus (SLE) is a complex and heterogeneous autoimmune disease that the immune system attacks healthy cells and tissues. SLE is difficult to get a correct and timely diagnosis, which makes its morbidity and mortality rate very high. The pathogenesis of SLE remains to be elucidated. To clarify the potential pathogenic mechanism of SLE, we performed an integrated analysis of two RNA-seq datasets of SLE. Differential expression analysis revealed that there were 4,713 and 2,473 differentially expressed genes, respectively, most of which were up-regulated. After integrating differentially expressed genes, we identified 790 common differentially expressed genes (DEGs). Gene functional enrichment analysis was performed and found that common differentially expressed genes were significantly enriched in some important immune-related biological processes and pathways. Our analysis provides new insights into a better understanding of the pathogenic mechanisms and potential candidate markers for systemic lupus erythematosus.


Sign in / Sign up

Export Citation Format

Share Document