scholarly journals Effects of PACAP on Schwann Cells: Focus on Nerve Injury

2020 ◽  
Vol 21 (21) ◽  
pp. 8233
Author(s):  
Grazia Maugeri ◽  
Agata Grazia D’Amico ◽  
Giuseppe Musumeci ◽  
Dora Reglodi ◽  
Velia D’Agata

Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury.

2014 ◽  
Vol 121 (4) ◽  
pp. 859-874 ◽  
Author(s):  
Wale Sulaiman ◽  
Thomas D. Dreesen

Object Although peripheral nerves can regenerate after traumatic injury, functional recovery is often suboptimal, especially after injuries to large nerve trunks such as the sciatic nerve or brachial plexus. Current research with animal models suggests that the lack of functional recovery resides in the lack of sufficient mature axons reaching their targets due to the loss of neurotrophic support by Schwann cells in the distal stump of injured nerves. This study was designed to investigate the effect of one-time application of transforming growth factor–β (TGF-β) at the repair site of chronically injured nerve. Methods The authors used the rat tibial nerve injury and repair model to investigate the effects of application of physiological concentrations of TGF-β plus forskolin or forskolin alone in vivo at the repair site on gene and protein expression and axon regeneration at 6 weeks after nerve repair. They used gene expression profiling and immunohistochemical analysis of indicative activated proteins in Schwann cells to evaluate the effects of treatments on the delayed repair. They also quantified the regenerated axons distal to the repair site by microscopy of paraffin sections. Results Both treatment with forskolin only and treatment with TGF-β plus forskolin resulted in increased numbers of axons regenerated compared with saline-only control. There was robust activation and proliferation of both Schwann cells and macrophages reminiscent of the processes during Wallerian degeneration. The treatment also induced upregulation of genes implicated in cellular activation and growth as detected by gene array. Conclusions Addition of TGF-β plus forskolin to the repair after chronic nerve injury improved axonal regeneration, probably via upregulation of required genes, expression of growth-associated protein, and reactivation of Schwann cells and macrophages. Further studies are required to better understand the mechanism of the positive effect of TGF-β treatment on old nerve injuries.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Aikeremujiang Muheremu ◽  
Qiang Ao

With significant advances in the research and application of nerve conduits, they have been used to repair peripheral nerve injury for several decades. Nerve conduits range from biological tubes to synthetic tubes, and from nondegradable tubes to biodegradable tubes. Researchers have explored hollow tubes, tubes filled with scaffolds containing neurotrophic factors, and those seeded with Schwann cells or stem cells. The therapeutic effect of nerve conduits is improving with increasing choice of conduit material, new construction of conduits, and the inclusion of neurotrophic factors and support cells in the conduits. Improvements in functional outcomes are expected when these are optimized for use in clinical practice.


2020 ◽  
Author(s):  
Jesus P Camiña ◽  
Agustín Sánchez-Temprano ◽  
Saúl Leal-López ◽  
Jessica González-Sánchez ◽  
Carlos S. Mosteiro ◽  
...  

Abstract Background. Injuries to the peripheral nerve system are common conditions, with broad spectrum of symptoms depending on the impaired nerves and severity of damage. Although peripheral nervous system retains a remarkable ability for regeneration, it is estimated that less than ten percent of patients fully recover function after nerve injury and the available treatments remain suboptimal. Here, we identify a role for the obestatin/GPR39 system in the regulation of the Schwann cell plasticity as well as in the preservation of neuromuscular synapses in the course of nerve repair. Methods. Utilizing a compression model of sciatic nerve injury, axonotmesis, we assessed the obestatin-related regenerative response in the peripheral nerve system. The role of the obestatin/GPR39 system was further evaluated on immortalized rat Schwann cells, IFRS1, and the model of neuronal differentiation, PC12 cells. The interactions between SCs and neurons was evaluated using a co-culture system that combine the SC cell line IFRS1 and the NGF-primed PC12. Results. Obestatin signaling directs proliferation and migration of Schwann cells that sustain axonal regrowth and later remyelinate regenerated axons. We provide evidence supporting the preservation of skeletal muscle by the maintenance of neuromuscular synapses through the axonal regulation of calpain-calpastatin proteolytic system. This encompasses the control of skeletal muscle homeostasis by regulation of the ubiquitin proteasome system and the autophagy machinery. Conclusions. These results provide important insights into how the obestatin/GPR39 system promotes nerve repair through integration of multiple molecular cues of neuron-Schwann cells crosstalk aimed to promote axon growth and guide axons back to their targets.


2020 ◽  
Vol 16 ◽  
pp. 174480692096380
Author(s):  
Jia-Yi Liao ◽  
Tian-Hua Zhou ◽  
Bao-Kang Chen ◽  
Zeng-Xu Liu

Schwann cells are components of the peripheral nerve myelin sheath, which supports and nourishes axons. Upon injury of the trigeminal nerve, Schwann cells are activated and cause trigeminal neuralgia by engulfing the myelin sheath and secreting various neurotrophic factors. Further, Schwann cells can repair the damaged nerve and thus alleviate trigeminal neuralgia. Here, we briefly describe the development and activation of Schwann cells after nerve injury. Moreover, we expound on the occurrence, regulation, and treatment of trigeminal neuralgia; further, we point out the current research deficiencies and future research directions.


1996 ◽  
Vol 54 (2) ◽  
pp. 331-334 ◽  
Author(s):  
L. A. V Peireira ◽  
M. A. Cruz-Höfling ◽  
M. S. J. Dertkigil ◽  
D. L. Graça

The integrity of myelin sheaths is maintained by oligodendrocytes and Schwann cells respectively in the central nervous system (CNS) and in the peripheral nervous system. The process of demyelination consisting of the withdrawal of myelin sheaths from their axons is a characteristic feature of multiple sclerosis, the most common human demyelinating disease. Many experimental models have been designed to study the biology of demyelination and remyelination (repair of the lost myelin) in the CNS, due to the difficulties in studying human material. In the ethidium bromide (an intercalating gliotoxic drug) model of demyelination, CNS remyelination may be carried out by surviving oligodendrocytes and/or by cells differentiated from the primitive cell lines or either by Schwann cells that invade the CNS. However, some factors such as the age of the experimental animals, intensity and time of exposure to the intercalating chemical and the topography of the lesions have marked influence on the repair of the tissue.


2013 ◽  
Vol 119 (3) ◽  
pp. 720-732 ◽  
Author(s):  
Yerko A. Berrocal ◽  
Vania W. Almeida ◽  
Ranjan Gupta ◽  
Allan D. Levi

Object Segmental nerve defects pose a daunting clinical challenge, as peripheral nerve injury studies have established that there is a critical nerve gap length for which the distance cannot be successfully bridged with current techniques. Construction of a neural prosthesis filled with Schwann cells (SCs) could provide an alternative treatment to successfully repair these long segmental gaps in the peripheral nervous system. The object of this study was to evaluate the ability of autologous SCs to increase the length at which segmental nerve defects can be bridged using a collagen tube. Methods The authors studied the use of absorbable collagen conduits in combination with autologous SCs (200,000 cells/μl) to promote axonal growth across a critical size defect (13 mm) in the sciatic nerve of male Fischer rats. Control groups were treated with serum only–filled conduits of reversed sciatic nerve autografts. Animals were assessed for survival of the transplanted SCs as well as the quantity of myelinated axons in the proximal, middle, and distal portions of the channel. Results Schwann cell survival was confirmed at 4 and 16 weeks postsurgery by the presence of prelabeled green fluorescent protein–positive SCs within the regenerated cable. The addition of SCs to the nerve guide significantly enhanced the regeneration of myelinated axons from the nerve stump into the proximal (p < 0.001) and middle points (p < 0.01) of the tube at 4 weeks. The regeneration of myelinated axons at 16 weeks was significantly enhanced throughout the entire length of the nerve guide (p < 0.001) as compared with their number in a serum–only filled tube and was similar in number compared with the reversed autograft. Autotomy scores were significantly lower in the animals whose sciatic nerve was repaired with a collagen conduit either without (p < 0.01) or with SCs (p < 0.001) when compared with a reversed autograft. Conclusions The technique of adding SCs to a guidance channel significantly enhanced the gap distance that can be repaired after peripheral nerve injury with long segmental defects and holds promise in humans. Most importantly, this study represents some of the first essential steps in bringing autologous SC-based therapies to the domain of peripheral nerve injuries with long segmental defects.


2008 ◽  
Vol 23 (6) ◽  
pp. 555-560 ◽  
Author(s):  
Tatiana Duobles ◽  
Thais de Sousa Lima ◽  
Beatriz de Freitas Azevedo Levy ◽  
Gerson Chadi

PURPOSE: The neurotrophic factor fibroblast growth factor-2 (FGF-2, bFGF) and Ca++ binding protein S100ß are expressed by the Schwann cells of the peripheral nerves and by the satellite cells of the dorsal root ganglia (DRG). Recent studies have pointed out the importance of the molecules in the paracrine mechanisms related to neuronal maintenance and plasticity of lesioned motor and sensory peripheral neurons. Moreover, cultured Schwann cells have been employed experimentally in the treatment of central nervous system lesions, in special the spinal cord injury, a procedure that triggers an enhanced sensorymotor function. Those cells have been proposed to repair long gap nerve injury. METHODS: Here we used double labeling immunohistochemistry and Western blot to better characterize in vitro and in vivo the presence of the proteins in the Schwann cells and in the satellite cells of the DRG as well as their regulation in those cells after a crush of the rat sciatic nerve. RESULTS: FGF-2 and S100ß are present in the Schwann cells of the sciatic nerve and in the satellite cells of the DRG. S100ß positive satellite cells showed increased size of the axotomized DRG and possessed elevated amount of FGF-2 immunoreactivity. Reactive satellite cells with increased FGF-2 labeling formed a ring-like structure surrounding DRG neuronal cell bodies.Reactive S100ß positive Schwann cells of proximal stump of axotomized sciatic nerve also expressed higher amounts of FGF-2. CONCLUSION: Reactive peripheral glial cells synthesizing FGF-2 and S100ß may be important in wound repair and restorative events in the lesioned peripheral nerves.


2014 ◽  
Vol 34 (18) ◽  
pp. 6323-6333 ◽  
Author(s):  
H. Kang ◽  
L. Tian ◽  
M. Mikesh ◽  
J. W. Lichtman ◽  
W. J. Thompson

Sign in / Sign up

Export Citation Format

Share Document