scholarly journals Cardiac ECM: Its Epigenetic Regulation and Role in Heart Development and Repair

2020 ◽  
Vol 21 (22) ◽  
pp. 8610
Author(s):  
Rui Song ◽  
Lubo Zhang

The extracellular matrix (ECM) is the non-cellular component in the cardiac microenvironment, and serves essential structural and regulatory roles in establishing and maintaining tissue architecture and cellular function. The patterns of molecular and biochemical ECM alterations in developing and adult hearts depend on the underlying injury type. In addition to exploring how the ECM regulates heart structure and function in heart development and repair, this review conducts an inclusive discussion of recent developments in the role, function, and epigenetic guidelines of the ECM. Moreover, it contributes to the development of new therapeutics for cardiovascular disease.

2014 ◽  
Vol 459 (2) ◽  
pp. 313-322 ◽  
Author(s):  
Christine Y. Chuang ◽  
Georg Degendorfer ◽  
Astrid Hammer ◽  
John M. Whitelock ◽  
Ernst Malle ◽  
...  

The extracellular matrix determines arterial wall structure and modulates the properties of associated cells. We show that the inflammation-associated oxidant peroxynitrous acid modifies human endothelial cell matrix, modulates gene expression and decreases cell adhesion, a key event in cardiovascular disease.


2020 ◽  
Author(s):  
Reena Singh ◽  
Richard Tan ◽  
Clara Tran ◽  
Thomas Loudovaris ◽  
Helen E. Thomas ◽  
...  

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Aline M De Souza ◽  
Jonathas Almeida ◽  
Nataliia Shults ◽  
Hong Ji ◽  
Kathryn Sandberg

Severe caloric restriction (sCR) increases the risk for acute cardiovascular disease. Less understood are the long-term effects on cardiovascular disease risk after the sCR period has ended. We investigated the effects of sCR on heart structure and function months after refeeding (sCR-Refed). Female Fischer rats (3-months-old) were maintained on (CT) ad libitum or a 60% caloric restricted diet for 2 weeks. Thereafter, all rats received ad libitum chow for 3 months and they were analyzed by precision ultrasound to assess their heart function. After imaging, the animals were sacrificed and the hearts were subjected to ischemia-reperfusion (I/R) using a Langendorff preparation. After 2 weeks of sCR, rats lost 15% of their initial body weight (BW) [% (100*(Final-Initial/Initial)): CT, 1.5±0.8 vs sCR, -15.4±1.1; p<0.001;n=8]. After 3 months of refeeding, there was no detectable difference in BW between CT and sFR-Refed groups. Isolated hearts from the sCR-Refed rats exhibited worse myocardial pathology after I/R compared to CT rats. The parallel orientation of myofibers and striations normally present in cardiomyocytes was lost in sCR-Refed rats. Further analysis revealed uneven blood-filling of the microcirculatory vessels and prominent interstitial edema of the myocardium. Hearts from sCR-Refed rats had more atrophied cardiomyocytes than CT [Atrophied/Total (%): CT, 0.2±0.1 vs sCR-Refed, 50.6±1.1; p<0.001; n=5]. The number of arrhythmic events during a 30 min ischemic interval in isolated hearts doubled after 2 weeks on the sCR diet ( data not shown ) and remained doubled 3 months later [Arrhythmias (% of time): CT, 34±8 vs sCR-Refed, 68±9; p=0.02; n=8]. Ultrasound imaging showed no difference in stroke volume, coronary perfusion pressure and left ventricular mass. However, the thickness of the left ventricular posterior wall was significantly reduced in sCR-Refed rats [(mm): CT, 2.55 ±0.03 vs sCR-Refed, 2.10±0.04; p=0.002; n=4]. These findings indicate heart structure and function remained damaged months after the sCR period ended and BW was restored. These studies have adverse cardiovascular risk implications for who are subjected either voluntarily (crash diets) or involuntarily (very low food security) to periods of inadequate caloric intake.


Oncotarget ◽  
2017 ◽  
Vol 8 (11) ◽  
pp. 17981-17994 ◽  
Author(s):  
Balaji Krishnamachary ◽  
Ioannis Stasinopoulos ◽  
Samata Kakkad ◽  
Marie-France Penet ◽  
Desmond Jacob ◽  
...  

1988 ◽  
Vol 15 (2) ◽  
pp. 27 ◽  
Author(s):  
C Critchley

In this paper, the evidence supporting two different models for the molecular mechanism of photoinhibition is discussed. One hypothesis centres around the suggestion that photoinhibition is due to the loss of the herbicide-binding Dl polypeptide of photosystem II. The other model suggests that damage to a functional group in the reaction centre is the primary cause of photoinhibition. In order to put the apparent controversy into context, recent developments in our understanding of the structure and function of the photosystem II reaction centre are described. Interpretation and judgement of all available evidence suggest primary photoinhibitory damage to be incurred by the reaction-centre chlorophyll P680 destabilising the apoprotein(s) and eventually resulting in their proteolytic degradation and removal from the photosystem II complex and the thylakoid membrane.


1998 ◽  
Vol 4 (6) ◽  
pp. 689-690
Author(s):  
Jarl Risberg

Imaging of the structure and function of the human brain has grown to an area with increasing impact on neuropsychological research as well as on the routine clinical evaluation of brain damaged patients. The scientific and popular literature is now flooded by increasingly more spectacular pictures of the brain. The images no longer only illustrate what is well known from earlier research but they do also sometimes provide information of importance for the further development of neuropsychological theories. The two volumes edited by Erin D. Bigler, Neuroimaging I and II, offer a possibility for neuropsychologists and other interested readers to get acquainted with the more recent developments in measurement technology and applications in basic science (Volume I) as well as in the clinic (Volume II). The authors of the 24 chapters are generally outstanding researchers, with impressive expertise within their fields of specialization.


2012 ◽  
Vol 180 (5) ◽  
pp. 1863-1878 ◽  
Author(s):  
Gerald C. Koenig ◽  
R. Grant Rowe ◽  
Sharlene M. Day ◽  
Farideh Sabeh ◽  
Jeffrey J. Atkinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document