scholarly journals The Role of Nitric Oxide in Cancer: Master Regulator or NOt?

2020 ◽  
Vol 21 (24) ◽  
pp. 9393
Author(s):  
Faizan H. Khan ◽  
Eoin Dervan ◽  
Dibyangana D. Bhattacharyya ◽  
Jake D. McAuliffe ◽  
Katrina M. Miranda ◽  
...  

Nitric oxide (NO) is a key player in both the development and suppression of tumourigenesis depending on the source and concentration of NO. In this review, we discuss the mechanisms by which NO induces DNA damage, influences the DNA damage repair response, and subsequently modulates cell cycle arrest. In some circumstances, NO induces cell cycle arrest and apoptosis protecting against tumourigenesis. NO in other scenarios can cause a delay in cell cycle progression, allowing for aberrant DNA repair that promotes the accumulation of mutations and tumour heterogeneity. Within the tumour microenvironment, low to moderate levels of NO derived from tumour and endothelial cells can activate angiogenesis and epithelial-to-mesenchymal transition, promoting an aggressive phenotype. In contrast, high levels of NO derived from inducible nitric oxide synthase (iNOS) expressing M1 and Th1 polarised macrophages and lymphocytes may exert an anti-tumour effect protecting against cancer. It is important to note that the existing evidence on immunomodulation is mainly based on murine iNOS studies which produce higher fluxes of NO than human iNOS. Finally, we discuss different strategies to target NO related pathways therapeutically. Collectively, we present a picture of NO as a master regulator of cancer development and progression.

2021 ◽  
Vol 16 (1) ◽  
pp. 27-33
Author(s):  
Yi Zhou ◽  
Liguo Wang ◽  
Hui Lin ◽  
Yunxia Wang ◽  
Kezhu Hou

This study was designed to evaluate the anti-cancer effects of bufalin against the human gastric cancer cells and unveil the underlying mechanism. The results showed that bufalin inhibited the proliferation and colony formation of the MGC-803 gastric cancer cells and exhibited an IC50 of 10 μM. These antiproliferative effects were found to be due to the induction of G2/M cell cycle arrest. The G2/M cell cycle arrest was also concomitant with inhibition of cdc2, cdc25 and cyclin B1. Furthermore, bufalin suppressed the epithelial-to-mesenchymal transition, migration, and invasion of the MGC-803 gastric cancer cells. The Western blot analysis revealed that bufalin exerted its effects via deactivation of EK/ERK signaling pathway. Taken together, these results suggest the potential of bufalin as the lead molecule for the development of chemotherapy for gastric cancer.  


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1655-1655
Author(s):  
Simone Boehrer ◽  
Lionel Ades ◽  
Nicolas Tajeddine ◽  
Lorenzo Galluzzi ◽  
Stephane de Botton ◽  
...  

Abstract Background: The hypomethylating agents azacytidine (AZA) and decitabine (DEC) have shown clinical efficacy in patients (pts) with MDS. There is in vitro evidence that both agents, in addition to their hypomethylating effect, also function by inducing apoptosis, cell cycle arrest and/or the activation of a DNA damage response (DDR). However, the exact contributions of those mechanisms of action and their functional interdependence remain to be defined. Methods: A panel of MDS (P39, MDS-1)- and AML (HL-60, KG-1)-derived cell lines were incubated with increasing dosages of AZA (1–2μM) and DEC (1–2μM) and the drugs capacity to induce apoptosis (DiOC6(3)/PI), cell cycle arrest (PI) and/or a DDR (immunoflourescence staining of P-ATM, P-Chk-1, P-Chk-2, γ-H2AX) were assessed in absence and presence of the ATM-inhibitor KU-55933 and the Chk-1 inhibitor UCN-01. Results: We show that both drugs induced dose-dependent apoptosis in myeloid cell lines: whereas AZA increased apoptosis in KG-1 and HL-60 by about 10% (48h, 2μM) the respective incubation with DEC augmented apoptosis by about 20% (HL-60) to 30% (KG-1). P39 cells were resistant to AZA and increased apoptosis by 15% after 48h of 2μM DEC, and MDS-1 cells were resistant to both drugs. In addition, both drugs induced a G2/M-arrest in P39 (+15% after 48h with 2μM of AZA or DEC) and HL-60 (+20% after 48h with 2μM of AZA or DEC) cells, but not in KG-1 and MDS-1 cells. Noteworthy, both drugs induced a DDR in the apoptosis-sensitive KG-1 cells (but not P39 cells) as evidenced by the appearance of nuclear P-ATM and γ-H2AX foci. Surprisingly, this activation of P-ATM did not induce the nuclear translocation of P-Chk-1-Ser317 or P-Chk-2-Ser68. To more clearly define the importance of the DDR in AZA- and DEC-induced apoptosis and G2/M-arrest, experiments were recapitulated in the presence of the ATM-inhibitor KU-55933 and the Chk-1 inhibitor UCN-01. Inhibition of ATM abrogated the apoptosis-inducing activity of AZA and DEC in KG-1 cells (without influencing cell cycle progression), whereas inhibition of Chk-1 remained without effect. In contrast, in P39 and HL-60 cells, inhibition of ATM neither affected cell cycle progression, nor sensitivity towards the drugs. Nevertheless, inhibition of Chk-1 by UCN-01 completely abrogated the G2/M-arresting effect of AZA (and diminished that of DEC) in P39 and HL-60 cells. Conclusions: We provide novel evidence for the cell-type dependent capacity of the hypomethylating agents 5-azacytidine and decitabine to induce apoptosis, cell-cycle arrest and DDR in cell lines representing different subtypes of MDS and AML. Moreover, we show the crucial role of ATM and Chk-1 activation – as part of the DDR – in mediating AZA and DEC apoptosis-inducing and cell cycle-arresting effects, respectively, providing evidence that hypomethylating agents confer their beneficial effects by employing different pathways of the DDR.


2015 ◽  
Vol 21 (9) ◽  
pp. 998-1009 ◽  
Author(s):  
Sara Lovisa ◽  
Valerie S LeBleu ◽  
Björn Tampe ◽  
Hikaru Sugimoto ◽  
Komal Vadnagara ◽  
...  

2020 ◽  
Author(s):  
Yongwoon Jung ◽  
Pavel Kraikivski

AbstractCancer and normal cells can respond differently to the same stressful conditions. Their dynamic responses under normal and stressful conditions are governed by complex molecular regulatory networks. We developed a computational model of G2-M DNA damage checkpoint regulation to study normal and cancer cell cycle progression under normal and stressful conditions. Our model is successful in explaining cancer cell cycle arrest in conditions when some cell cycle and DNA damage checkpoint regulators are inhibited, whereas the same conditions only delay entry into mitosis in normal cells. We use the model to explain known phenotypes of gene deletion mutants and predict phenotypes of yet uncharacterized mutants in normal and cancer cells. We also use sensitive analyses to identify the ranges of model parameter values that lead to the cell cycle arrest in cancer cells. Our results can be used to predict the effect of a potential treatment on cell cycle progression of normal and cancer cells.


Author(s):  
T. Zhao ◽  
G. Zadeh

Ionizing radiation (IR) is one of the conventional post-surgical treatments for Glioblastoma Multiforme (GBM). Mesenchymal stem cells (MSCs) constitute a subpopulation of bone marrow derived cells which are actively recruited to the site of radiation and/or tumour microenvironment (TME), both of which have important implications for neovascularization and tumor progression. The goal of this project is to investigate the functional contribution of MSCs in the TME. We postulate that Bone Marrow-MSCs promote radio-resistance in GBM via cell cycle arrest. We tested the effect of MSC on U87 glioblastoma cell line in response to IR. We found that MSC co-culture, MSC-conditioned media (MSCCM) and irradiated MSC-conditioned media (MSCIRCM) did not reduce IR-induced p53 (ser15) phosphorylation, signifying intact p53-dependent DNA damage pathway in all conditions. However, both MSCCM and MSCIRCM temporally increased phospho-Chk2, a kinase involved in ATM-dependent cascade and cell cycle arrest. This increase occurred at 24 hours and reverted to baseline levels by 48 hours. Interestingly, IR (15Gy) caused transiently heightened metabolic rate under MSC and MSC IRCM as opposed to IR-null treatment at 48 hours elevated cell proliferation. MSCCM, but not MSCIRCM, marginally reduced caspase 3/7-dependent apoptotic levels. The combination of IR and MSCCM as well as MSCIRCM first increased protein level of phospho-Chk2 at 24 hours; followed by increased metabolic rate at 48 hours; and lastly, boosted proliferation at 72 hours. This data combined proposes plausible machinery for BM-MSC mediated radio-resistance by initiating cell cycle arrest in tumour cells for DNA damage repair.


Sign in / Sign up

Export Citation Format

Share Document