scholarly journals Differential Contribution of N- and C-Terminal Regions of HIF1α and HIF2α to Their Target Gene Selectivity

2020 ◽  
Vol 21 (24) ◽  
pp. 9401
Author(s):  
Antonio Bouthelier ◽  
Florinda Meléndez-Rodríguez ◽  
Andrés A. Urrutia ◽  
Julián Aragonés

Cellular response to hypoxia is controlled by the hypoxia-inducible transcription factors HIF1α and HIF2α. Some genes are preferentially induced by HIF1α or HIF2α, as has been explored in some cell models and for particular sets of genes. Here we have extended this analysis to other HIF-dependent genes using in vitro WT8 renal carcinoma cells and in vivo conditional Vhl-deficient mice models. Moreover, we generated chimeric HIF1/2 transcription factors to study the contribution of the HIF1α and HIF2α DNA binding/heterodimerization and transactivation domains to HIF target specificity. We show that the induction of HIF1α-dependent genes in WT8 cells, such as CAIX (CAR9) and BNIP3, requires both halves of HIF, whereas the HIF2α transactivation domain is more relevant for the induction of HIF2 target genes like the amino acid carrier SLC7A5. The HIF selectivity for some genes in WT8 cells is conserved in Vhl-deficient lung and liver tissue, whereas other genes like Glut1 (Slc2a1) behave distinctly in these tissues. Therefore the relative contribution of the DNA binding/heterodimerization and transactivation domains for HIF target selectivity can be different when comparing HIF1α or HIF2α isoforms, and that HIF target gene specificity is conserved in human and mouse cells for some of the genes analyzed.

2019 ◽  
Vol 47 (19) ◽  
pp. 9967-9989 ◽  
Author(s):  
Maria Carmen Mulero ◽  
Vivien Ya-Fan Wang ◽  
Tom Huxford ◽  
Gourisankar Ghosh

Abstract The NF-κB family of dimeric transcription factors regulates transcription by selectively binding to DNA response elements present within promoters or enhancers of target genes. The DNA response elements, collectively known as κB sites or κB DNA, share the consensus 5′-GGGRNNNYCC-3′ (where R, Y and N are purine, pyrimidine and any nucleotide base, respectively). In addition, several DNA sequences that deviate significantly from the consensus have been shown to accommodate binding by NF-κB dimers. X-ray crystal structures of NF-κB in complex with diverse κB DNA have helped elucidate the chemical principles that underlie target selection in vitro. However, NF-κB dimers encounter additional impediments to selective DNA binding in vivo. Work carried out during the past decades has identified some of the barriers to sequence selective DNA target binding within the context of chromatin and suggests possible mechanisms by which NF-κB might overcome these obstacles. In this review, we first highlight structural features of NF-κB:DNA complexes and how distinctive features of NF-κB proteins and DNA sequences contribute to specific complex formation. We then discuss how native NF-κB dimers identify DNA binding targets in the nucleus with support from additional factors and how post-translational modifications enable NF-κB to selectively bind κB sites in vivo.


2020 ◽  
Author(s):  
Clément Immarigeon ◽  
Sandra Bernat-Fabre ◽  
Emmanuelle Guillou ◽  
Alexis Verger ◽  
Elodie Prince ◽  
...  

AbstractThe evolutionarily-conserved multiprotein Mediator complex (MED) serves as an interface between DNA-bound transcription factors (TFs) and the RNA Polymerase II machinery. It has been proposed that each TF interacts with a dedicated MED subunit to induce specific transcriptional responses. However, binary MED subunit - TF partnerships are probably oversimplified models. Using Drosophila TFs of the GATA family - Pannier (Pnr) and Serpent (Srp) - as a model, we have previously established GATA cofactor evolutionarily-conserved function for the Med1 Mediator subunit. Here, we show that another subunit, Med19, is required for GATA-dependent gene expression and interacts physically with Pnr and Srp in cellulo, in vivo and in vitro through their conserved C-zinc finger (ZF), indicating general GATA co-activator functions. Interestingly, Med19 is critical for the regulation of all tested GATA target genes which is not the case for Med1, suggesting differential use of MED subunits by GATAs depending on the target gene. Lastly, despite their presumed distant position within the MED middle module, both subunits interact physically. In conclusion, our data shed new light first on the MED complex, engaging several subunits to mediate TF-driven transcriptional responses and second, on GATA TFs, showing that ZF DNA-binding domain also serves for transactivation.


Development ◽  
1997 ◽  
Vol 124 (22) ◽  
pp. 4425-4433 ◽  
Author(s):  
M.D. Biggin ◽  
W. McGinnis

Recent advances have shed new light on how the Q50 homeoproteins act in Drosophila. These transcription factors have remarkably similar and promiscuous DNA-binding specificities in vitro; yet they each specify distinct developmental fates in vivo. One current model suggests that, because the Q50 homeoproteins have distinct biological functions, they must each regulate different target genes. According to this ‘co-selective binding’ model, significant binding of Q50 homeoproteins to functional DNA elements in vivo would be dependent upon cooperative interactions with other transcription factors (cofactors). If the Q50 homeoproteins each interact differently with cofactors, they could be selectively targeted to unique, limited subsets of their in vitro recognition sites and thus control different genes. However, a variety of experiments question this model. Molecular and genetic experiments suggest that the Q50 homeoproteins do not regulate very distinct sets of genes. Instead, they mostly control the expression of a large number of shared targets. The distinct morphogenic properties of the various Q50 homeoproteins may principally result from the different manners in which they either activate or repress these common targets. Further, in vivo binding studies indicate that at least two Q50 homeoproteins have very broad and similar DNA-binding specificities in embryos, a result that is inconsistent with the ‘co-selective binding’ model. Based on these and other data, we suggest that Q50 homeoproteins bind many of their recognition sites without the aid of cofactors. In this ‘widespread binding’ model, cofactors act mainly by helping to distinguish the way in which homeoproteins regulate targets to which they are already bound.


2007 ◽  
Vol 18 (11) ◽  
pp. 4528-4542 ◽  
Author(s):  
Cheng-Jun Hu ◽  
Aneesa Sataur ◽  
Liyi Wang ◽  
Hongqing Chen ◽  
M. Celeste Simon

The basic helix-loop-helix-Per-ARNT-Sim–proteins hypoxia-inducible factor (HIF)-1α and HIF-2α are the principal regulators of the hypoxic transcriptional response. Although highly related, they can activate distinct target genes. In this study, the protein domain and molecular mechanism important for HIF target gene specificity are determined. We demonstrate that although HIF-2α is unable to activate multiple endogenous HIF-1α–specific target genes (e.g., glycolytic enzymes), HIF-2α still binds to their promoters in vivo and activates reporter genes derived from such targets. In addition, comparative analysis of the N-terminal DNA binding and dimerization domains of HIF-1α and HIF-2α does not reveal any significant differences between the two proteins. Importantly, replacement of the N-terminal transactivation domain (N-TAD) (but not the DNA binding domain, dimerization domain, or C-terminal transactivation domain [C-TAD]) of HIF-2α with the analogous region of HIF-1α is sufficient to convert HIF-2α into a protein with HIF-1α functional specificity. Nevertheless, both the N-TAD and C-TAD are important for optimal HIF transcriptional activity. Additional experiments indicate that the ETS transcription factor ELK is required for HIF-2α to activate specific target genes such as Cited-2, EPO, and PAI-1. These results demonstrate that the HIF-α TADs, particularly the N-TADs, confer HIF target gene specificity, by interacting with additional transcriptional cofactors.


2004 ◽  
Vol 82 (4) ◽  
pp. 460-471 ◽  
Author(s):  
Lin Li ◽  
Shihua He ◽  
Jian-Min Sun ◽  
James R Davie

The Sp family of transcription factors is united by a particular combination of three conserved Cys2His2 zinc fingers that form the sequence-specific DNA-binding domain. Within the Sp family of transcription factors, Sp1 and Sp3 are ubiquitously expressed in mammalian cells. They can bind and act through GC boxes to regulate gene expression of multiple target genes. Although Sp1 and Sp3 have similar structures and high homology in their DNA binding domains, in vitro and in vivo studies reveal that these transcription factors have strikingly different functions. Sp1 and Sp3 are able to enhance or repress promoter activity. Regulation of the transcriptional activity of Sp1 and Sp3 occurs largely at the post-translational level. In this review, we focus on the roles of Sp1 and Sp3 in the regulation of gene expression.Key words: Sp1, Sp3, gene regulation, sub-cellular localization.


2021 ◽  
Vol 9 (1) ◽  
pp. 6
Author(s):  
Narendra Pratap Singh ◽  
Bony De Kumar ◽  
Ariel Paulson ◽  
Mark E. Parrish ◽  
Carrie Scott ◽  
...  

Knowledge of the diverse DNA binding specificities of transcription factors is important for understanding their specific regulatory functions in animal development and evolution. We have examined the genome-wide binding properties of the mouse HOXB1 protein in embryonic stem cells differentiated into neural fates. Unexpectedly, only a small number of HOXB1 bound regions (7%) correlate with binding of the known HOX cofactors PBX and MEIS. In contrast, 22% of the HOXB1 binding peaks display co-occupancy with the transcriptional repressor REST. Analyses revealed that co-binding of HOXB1 with PBX correlates with active histone marks and high levels of expression, while co-occupancy with REST correlates with repressive histone marks and repression of the target genes. Analysis of HOXB1 bound regions uncovered enrichment of a novel 15 base pair HOXB1 binding motif HB1RE (HOXB1 response element). In vitro template binding assays showed that HOXB1, PBX1, and MEIS can bind to this motif. In vivo, this motif is sufficient for direct expression of a reporter gene and over-expression of HOXB1 selectively represses this activity. Our analyses suggest that HOXB1 has evolved an association with REST in gene regulation and the novel HB1RE motif contributes to HOXB1 function in part through a repressive role in gene expression.


1999 ◽  
Vol 19 (6) ◽  
pp. 4028-4038 ◽  
Author(s):  
Shen-Hsi Yang ◽  
Alex Galanis ◽  
Andrew D. Sharrocks

ABSTRACT Mitogen-activated protein (MAP) kinase-mediated signalling to the nucleus is an important event in the conversion of extracellular signals into a cellular response. However, the existence of multiple MAP kinases which phosphorylate similar phosphoacceptor motifs poses a problem in maintaining substrate specificity and hence the correct biological response. Both the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) subfamilies of MAP kinases use a second specificity determinant and require docking to their transcription factor substrates to achieve maximal substrate activation. In this study, we demonstrate that among the different MAP kinases, the MADS-box transcription factors MEF2A and MEF2C are preferentially phosphorylated and activated by the p38 subfamily members p38α and p38β2. The efficiency of phosphorylation in vitro and transcriptional activation in vivo of MEF2A and MEF2C by these p38 subtypes requires the presence of a kinase docking domain (D-domain). Furthermore, the D-domain from MEF2A is sufficient to confer p38 responsiveness on different transcription factors, and reciprocal effects are observed upon the introduction of alternative D-domains into MEF2A. These results therefore contribute to our understanding of signalling to MEF2 transcription factors and demonstrate that the requirement for substrate binding by MAP kinases is an important facet of three different subclasses of MAP kinases (ERK, JNK, and p38).


1991 ◽  
Vol 11 (1) ◽  
pp. 401-411
Author(s):  
S Cuthill ◽  
A Wilhelmsson ◽  
L Poellinger

To reconstitute the molecular mechanisms underlying the cellular response to soluble receptor ligands, we have exploited a cell-free system that exhibits signal- (dioxin-)induced activation of the latent cytosolic dioxin receptor to an active DNA-binding species. The DNA-binding properties of the in vitro-activated form were qualitatively indistinguishable from those of in vivo-activated nuclear receptor extracted from dioxin-treated cells. In vitro activation of the receptor by dioxin was dose dependent and was mimicked by other dioxin receptor ligands in a manner that followed the rank order of their relative affinities for the receptor in vitro and their relative potencies to induce target gene transcription in vivo. Thus, in addition to triggering the initial release of inhibition of DNA binding and presumably allowing nuclear translocation, the ligand appears to play a crucial role in the direct control of the level of functional activity of a given ligand-receptor complex.


2020 ◽  
Vol 295 (39) ◽  
pp. 13617-13629
Author(s):  
Clément Immarigeon ◽  
Sandra Bernat-Fabre ◽  
Emmanuelle Guillou ◽  
Alexis Verger ◽  
Elodie Prince ◽  
...  

The evolutionarily conserved multiprotein Mediator complex (MED) serves as an interface between DNA-bound transcription factors (TFs) and the RNA Pol II machinery. It has been proposed that each TF interacts with a dedicated MED subunit to induce specific transcriptional responses. But are these binary partnerships sufficient to mediate TF functions? We have previously established that the Med1 Mediator subunit serves as a cofactor of GATA TFs in Drosophila, as shown in mammals. Here, we observe mutant phenotype similarities between another subunit, Med19, and the Drosophila GATA TF Pannier (Pnr), suggesting functional interaction. We further show that Med19 physically interacts with the Drosophila GATA TFs, Pnr and Serpent (Srp), in vivo and in vitro through their conserved C-zinc finger domains. Moreover, Med19 loss of function experiments in vivo or in cellulo indicate that it is required for Pnr- and Srp-dependent gene expression, suggesting general GATA cofactor functions. Interestingly, Med19 but not Med1 is critical for the regulation of all tested GATA target genes, implying shared or differential use of MED subunits by GATAs depending on the target gene. Lastly, we show a direct interaction between Med19 and Med1 by GST pulldown experiments indicating privileged contacts between these two subunits of the MED middle module. Together, these findings identify Med19/Med1 as a composite GATA TF interface and suggest that binary MED subunit–TF partnerships are probably oversimplified models. We propose several mechanisms to account for the transcriptional regulation of GATA-targeted genes.


2019 ◽  
Vol 116 (18) ◽  
pp. 8859-8868 ◽  
Author(s):  
Fan He ◽  
Wade Borcherds ◽  
Tanjing Song ◽  
Xi Wei ◽  
Mousumi Das ◽  
...  

The p53 tumor suppressor is a sequence-specific DNA binding protein that activates gene transcription to regulate cell survival and proliferation. Dynamic control of p53 degradation and DNA binding in response to stress signals are critical for tumor suppression. The p53 N terminus (NT) contains two transactivation domains (TAD1 and TAD2), a proline-rich region (PRR), and multiple phosphorylation sites. Previous work revealed the p53 NT reduced DNA binding in vitro. Here, we show that TAD2 and the PRR inhibit DNA binding by directly interacting with the sequence-specific DNA binding domain (DBD). NMR spectroscopy revealed that TAD2 and the PRR interact with the DBD at or near the DNA binding surface, possibly acting as a nucleic acid mimetic to competitively block DNA binding. In vitro and in vivo DNA binding analyses showed that the NT reduced p53 DNA binding affinity but improved the ability of p53 to distinguish between specific and nonspecific sequences. MDMX inhibits p53 binding to specific target promoters but stimulates binding to nonspecific chromatin sites. The results suggest that the p53 NT regulates the affinity and specificity of DNA binding by the DBD. The p53 NT-interacting proteins and posttranslational modifications may regulate DNA binding, partly by modulating the NT–DBD interaction.


Sign in / Sign up

Export Citation Format

Share Document