scholarly journals Potential of the Electronic Nose for the Detection of Respiratory Diseases with and without Infection

2020 ◽  
Vol 21 (24) ◽  
pp. 9416
Author(s):  
Johann-Christoph Licht ◽  
Hartmut Grasemann

Respiratory tract infections are common, and when affecting the lower airways and lungs, can result in significant morbidity and mortality. There is an unfilled need for simple, non-invasive tools that can be used to screen for such infections at the clinical point of care. The electronic nose (eNose) is a novel technology that detects volatile organic compounds (VOCs). Early studies have shown that certain diseases and infections can result in characteristic changes in VOC profiles in the exhaled breath. This review summarizes current knowledge on breath analysis by the electronic nose and its potential for the detection of respiratory diseases with and without infection.

2021 ◽  
Author(s):  
Imadeddine Azzouz ◽  
Mohammad Sharif Khan ◽  
Andrew C. Bishop ◽  
Khaldoun Bachari

This chapter introduces the significance of exploring volatile organic compounds (VOC) in clinical samples. Because exhaled-breath is easy to collect, unlimited, and instruments are already commercially available, VOC analysis in exhaled breath seems to be a promising tool for non-invasive detection of many diseases including infections, respiratory diseases, and cancers. Here, we have focused on some appropriate technologies to extract, pre-concentrate, and evaluate VOC biomarkers in exhaled breath. The second part of this chapter discusses the comprehensive GC × GC in bio-VOCs analysis and illustrates the potential of using this analytical technique.


Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2317
Author(s):  
Dima Augustin Catalin ◽  
Balaban Daniel Vasile ◽  
Dima Alina

Volatile organic compounds (VOCs) are part of the exhaled breath that were proposed as non-invasive breath biomarkers via different human discharge products like saliva, breath, urine, blood, or tissues. Particularly, due to the non-invasive approach, VOCs were considered as potential biomarkers for non-invasive early cancer detection. We herein aimed to review the data over VOCs utility in digestive neoplasia as early diagnosis or monitoring biomarkers. A systematic literature search was done using MEDLINE via PubMed, Cochrane Library, and Thomson Reuters’ Web of Science Core Collection. We identified sixteen articles that were included in the final analysis. Based on the current knowledge, we cannot identify a single VOC as a specific non-invasive biomarker for digestive neoplasia. Several combinations of up to twelve VOCs seem promising for accurately detecting some neoplasia types. A combination of different VOCs breath expression are promising tools for digestive neoplasia screening.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 584
Author(s):  
Kelvin de Jesús Beleño-Sáenz ◽  
Juan Martín Cáceres-Tarazona ◽  
Pauline Nol ◽  
Aylen Lisset Jaimes-Mogollón ◽  
Oscar Eduardo Gualdrón-Guerrero ◽  
...  

More effective methods to detect bovine tuberculosis, caused by Mycobacterium bovis, in wildlife, is of paramount importance for preventing disease spread to other wild animals, livestock, and human beings. In this study, we analyzed the volatile organic compounds emitted by fecal samples collected from free-ranging wild boar captured in Doñana National Park, Spain, with an electronic nose system based on organically-functionalized gold nanoparticles. The animals were separated by the age group for performing the analysis. Adult (>24 months) and sub-adult (12–24 months) animals were anesthetized before sample collection, whereas the juvenile (<12 months) animals were manually restrained while collecting the sample. Good accuracy was obtained for the adult and sub-adult classification models: 100% during the training phase and 88.9% during the testing phase for the adult animals, and 100% during both the training and testing phase for the sub-adult animals, respectively. The results obtained could be important for the further development of a non-invasive and less expensive detection method of bovine tuberculosis in wildlife populations.


2016 ◽  
Vol 42 (2) ◽  
pp. 143-145 ◽  
Author(s):  
Silvano Dragonieri ◽  
Vitaliano Nicola Quaranta ◽  
Pierluigi Carratu ◽  
Teresa Ranieri ◽  
Onofrio Resta

We aimed to investigate the effects of age and gender on the profile of exhaled volatile organic compounds. We evaluated 68 healthy adult never-smokers, comparing them by age and by gender. Exhaled breath samples were analyzed by an electronic nose (e-nose), resulting in "breathprints". Principal component analysis and canonical discriminant analysis showed that older subjects (≥ 50 years of age) could not be distinguished from younger subjects on the basis of their breathprints, as well as that the breathprints of males could not distinguished from those of females (cross-validated accuracy, 60.3% and 57.4%, respectively).Therefore, age and gender do not seem to affect the overall profile of exhaled volatile organic compounds measured by an e-nose.


2019 ◽  
Vol 8 (11) ◽  
pp. 1783 ◽  
Author(s):  
Valentina Agnese Ferraro ◽  
Stefania Zanconato ◽  
Eugenio Baraldi ◽  
Silvia Carraro

Background: In the context of the so-called unified airway theory, chronic rhinosinusitis (CRS) and asthma may coexist. The inflammation underlying these conditions can be studied through the aid of biomarkers. Main body: We described the main biological mediators that have been studied in pediatric CRS and asthma, and, according to the available literature, we reported their potential role in the diagnosis and management of these conditions. As for CRS, we discussed the studies that investigated nasal nitric oxide (nNO), pendrin, and periostin. As for asthma, we discussed the role of fractional exhaled nitric oxide (feNO), the role of periostin, and that of biological mediators measured in exhaled breath condensate (EBC) and exhaled air (volatile organic compounds, VOCs). Conclusion: Among non-invasive biomarkers, nNO seems the most informative in CRS and feNO in asthma. Other biological mediators seem promising, but further studies are needed before they can be applied in clinical practice.


Author(s):  
Mustafa Abumeeiz ◽  
Lauren Elliott ◽  
Phillip Olla

Abstract Due to the COVID-19 pandemic, there is currently a need for accurate, rapid, and easy-to-administer diagnostic tools to help communities manage local outbreaks and assess the spread of disease. The use of Artificial Intelligence within the domain of breath analysis techniques has shown to have potential in diagnosing a variety of diseases such as cancer and lung disease by analyzing volatile organic compounds (VOCs) in exhaled breath. This combined with their rapid, easy-to-use, and non-invasive nature makes them a good candidate for use in diagnosing COVID-19 in large scale public health operations. However, there remains issues with their implementation when it comes to the infrastructure currently available to support their use on a broad scale. This includes issues of standardization, and whether or not a characteristic VOC pattern can be identified for COVID-19. Despite these difficulties, breathalysers offer potential to assist in pandemic responses and their use should be investigated.


2021 ◽  
Author(s):  
Rianne de Vries ◽  
René M. Vigeveno ◽  
Simone Mulder ◽  
Niloufar Farzan ◽  
Demi R. Vintges ◽  
...  

AbstractBackgroundRapid and accurate detection of SARS-CoV-2 infected individuals is crucial for taking timely measures and minimizing the risk of further SARS-CoV-2 spread. We aimed to assess the accuracy of exhaled breath analysis by electronic nose (eNose) for the discrimination between individuals with and without a SARS-CoV-2 infection.MethodsThis was a prospective real-world study of individuals presenting to public test facility for SARS-CoV-2 detection by molecular amplification tests (TMA or RT-PCR). After sampling of a combined throat/nasopharyngeal swab, breath profiles were obtained using a cloud-connected eNose. Data-analysis involved advanced signal processing and statistics based on independent t-tests followed by linear discriminant and ROC analysis. Data from the training set were tested in a validation, a replication and an asymptomatic set.FindingsFor the analysis 4510 individuals were available. In the training set (35 individuals with; 869 without SARS-CoV-2), the eNose sensors were combined into a composite biomarker with a ROC-AUC of 0.947 (CI:0.928-0.967). These results were confirmed in the validation set (0.957; CI:0.942-0.971, n=904) and externally validated in the replication set (0.937; CI:0.926-0.947, n=1948) and the asymptomatic set (0.909; CI:0.879-0.938, n=754). Selecting a cut-off value of 0.30 in the training set resulted in a sensitivity/specificity of 100/78, >99/84, 98/82% in the validation, replication and asymptomatic set, respectively.InterpretationeNose represents a quick and non-invasive method to reliably rule out SARS-CoV-2 infection in public health test facilities and can be used as a screening test to define who needs an additional confirmation test.FundingMinistry of Health, Welfare and SportResearch in contextEvidence before this studyElectronic nose technology is an emerging diagnostic tool for diagnosis and phenotyping of a wide variety of diseases, including inflammatory respiratory diseases, lung cancer, and infections.As of Feb 13, 2021, our search of PubMed using keywords “COVID-19” OR “SARS-CoV-2” AND “eNose” OR “electronic nose” OR “exhaled breath analysis” yielded 4 articles (1-4) that have assessed test characteristics of electronic nose to diagnose COVID-19. In these small studies the obtained signals using sensor-based technologies, two-dimensional gas chromatography and time-of-flight mass spectrometry, or proton transfer reaction time-of-flight mass spectrometry, provided adequate discrimination between patients with and without COVID-19.Added value of this studyWe prospectively studied the accuracy of exhaled breath analysis by electronic nose (eNose) to diagnose or rule out a SARS-CoV-2 infection in individuals with and without symptoms presenting to a public test facility. In the training set with 904 individuals, the eNose sensors were combined into a composite biomarker with a ROC-AUC of 0.948. In three independent validation cohorts of 3606 individuals in total, eNose was able to reliably rule out SARS-CoV-2 infection in 70-75% of individuals, with a sensitivity ranging between 98-100%, and a specificity between 78-84%. No association was found between cycle thresholds values, as semi-quantitative measure of viral load, and eNose variables.Implications of all the available evidenceThe available findings, including those from our study, support the use of eNose technology to distinguish between individuals with and without a SARS-CoV-2 infection with high accuracy. Exhaled breath analysis by eNose represents a quick and non-invasive method to reliably rule out a SARS-CoV-2 infection in public health test facilities. The results can be made available within seconds and can therefore be used as screening instrument. The eNose can reliably rule out a SARS-CoV-2 infection, eliminating the need for additional time-consuming, stressful, and expensive diagnostic tests in the majority of individuals.


Sign in / Sign up

Export Citation Format

Share Document