scholarly journals A Highlight on the Inhibition of Fungal Carbonic Anhydrases as Drug Targets for the Antifungal Armamentarium

2021 ◽  
Vol 22 (9) ◽  
pp. 4324
Author(s):  
Claudiu T. Supuran ◽  
Clemente Capasso

Carbon dioxide (CO2), a vital molecule of the carbon cycle, is a critical component in living organisms’ metabolism, performing functions that lead to the building of compounds fundamental for the life cycle. In all living organisms, the CO2/bicarbonate (HCO3−) balancing is governed by a superfamily of enzymes, known as carbonic anhydrases (CAs, EC 4.2.1.1). CAs catalyze the pivotal physiological reaction, consisting of the reversible hydration of the CO2 to HCO3− and protons. Opportunistic and pathogenic fungi can sense the environmental CO2 levels, which influence their virulence or environmental subsistence traits. The fungal CO2-sensing is directly stimulated by HCO3− produced in a CA-dependent manner, which directly activates adenylyl cyclase (AC) involved in the fungal spore formation. The interference with CA activity may impair fungal growth and virulence, making this approach interesting for designing antifungal drugs with a novel mechanism of action: the inhibition of CAs linked to the CO2/HCO3−/pH chemosensing and signaling. This review reports that sulfonamides and their bioisosteres as well as inorganic anions can inhibit in vitro the β- and α-CAs from the fungi, suggesting how CAs may be considered as a novel “pathogen protein” target of many opportunistic, pathogenic fungi.

2010 ◽  
Vol 59 (2) ◽  
pp. 200-205 ◽  
Author(s):  
Ildikó Nyilasi ◽  
Sándor Kocsubé ◽  
Miklós Pesti ◽  
Gyöngyi Lukács ◽  
Tamás Papp ◽  
...  

The in vitro antifungal activities of primycin (PN) and various statins against some opportunistic pathogenic fungi were investigated. PN completely inhibited the growth of Candida albicans (MIC 64 μg ml−1) and Candida glabrata (MIC 32 μg ml−1), and was very effective against Paecilomyces variotii (MIC 2 μg ml−1), but had little effect on Aspergillus fumigatus, Aspergillus flavus or Rhizopus oryzae (MICs >64 μg ml−1). The fungi exhibited different degrees of sensitivity to the statins; fluvastatin (FLV) and simvastatin (SIM) exerted potent antifungal activities against a wide variety of clinically important fungal pathogens. Atorvastatin, rosuvastatin and lovastatin (LOV) had a slight effect against all fungal isolates tested, whereas pravastatin was completely ineffective. The in vitro interactions between PN and the different statins were investigated using a standard chequerboard titration method. When PN was combined with FLV, LOV or SIM, both synergistic and additive effects were observed. The extent of inhibition was higher when these compounds were applied together, and the concentrations of PN and the given statin needed to block fungal growth completely could be decreased by several dilution steps. Similar interactions were observed when the variability of the within-species sensitivities was investigated.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Emily E. Rosowski ◽  
Jiaye He ◽  
Jan Huisken ◽  
Nancy P. Keller ◽  
Anna Huttenlocher

ABSTRACT Antifungal therapy can fail in a remarkable number of patients with invasive fungal disease, resulting in significant morbidity worldwide. A major contributor to this failure is that while these drugs have high potency in vitro, we do not fully understand how they work inside infected hosts. Here, we used a transparent larval zebrafish model of Aspergillus fumigatus infection amenable to real-time imaging of invasive disease as an in vivo intermediate vertebrate model to investigate the efficacy and mechanism of the antifungal drug voriconazole. We found that the ability of voriconazole to protect against A. fumigatus infection depends on host innate immune cells and, specifically, on the presence of macrophages. While voriconazole inhibits fungal spore germination and growth in vitro, it does not do so in larval zebrafish. Instead, live imaging of whole, intact larvae over a multiday course of infection revealed that macrophages slow down initial fungal growth, allowing voriconazole time to target and kill A. fumigatus hyphae postgermination. These findings shed light on how antifungal drugs such as voriconazole may synergize with the immune response in living hosts.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 737
Author(s):  
Marina Pekmezovic ◽  
Melina Kalagasidis Krusic ◽  
Ivana Malagurski ◽  
Jelena Milovanovic ◽  
Karolina Stępień ◽  
...  

Novel biodegradable and biocompatible formulations of “old” but “gold” drugs such as nystatin (Nys) and amphotericin B (AmB) were made using a biopolymer as a matrix. Medium chain length polyhydroxyalkanoates (mcl-PHA) were used to formulate both polyenes (Nys and AmB) in the form of films (~50 µm). Thermal properties and stability of the materials were not significantly altered by the incorporation of polyenes in mcl-PHA, but polyene containing materials were more hydrophobic. These formulations were tested in vitro against a panel of pathogenic fungi and for antibiofilm properties. The films containing 0.1 to 2 weight % polyenes showed good activity and sustained polyene release for up to 4 days. A PHA monomer, namely 3-hydroxydecanoic acid (C10-OH), was added to the films to achieve an enhanced synergistic effect with polyenes against fungal growth. Mcl-PHA based polyene formulations showed excellent growth inhibitory activity against both Candida yeasts (C. albicans ATCC 1023, C. albicans SC5314 (ATCC MYA-2876), C. parapsilosis ATCC 22019) and filamentous fungi (Aspergillus fumigatus ATCC 13073; Trichophyton mentagrophytes ATCC 9533, Microsporum gypseum ATCC 24102). All antifungal PHA film preparations prevented the formation of a C. albicans biofilm, while they were not efficient in eradication of mature biofilms, rendering them suitable for the transdermal application or as coatings of implants.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 639
Author(s):  
Yiling Sun ◽  
Ayelen Tayagui ◽  
Sarah Sale ◽  
Debolina Sarkar ◽  
Volker Nock ◽  
...  

Pathogenic fungi and oomycetes give rise to a significant number of animal and plant diseases. While the spread of these pathogenic microorganisms is increasing globally, emerging resistance to antifungal drugs is making associated diseases more difficult to treat. High-throughput screening (HTS) and new developments in lab-on-a-chip (LOC) platforms promise to aid the discovery of urgently required new control strategies and anti-fungal/oomycete drugs. In this review, we summarize existing HTS and emergent LOC approaches in the context of infection strategies and invasive growth exhibited by these microorganisms. To aid this, we introduce key biological aspects and review existing HTS platforms based on both conventional and LOC techniques. We then provide an in-depth discussion of more specialized LOC platforms for force measurements on hyphae and to study electro- and chemotaxis in spores, approaches which have the potential to aid the discovery of alternative drug targets on future HTS platforms. Finally, we conclude with a brief discussion of the technical developments required to improve the uptake of these platforms into the general laboratory environment.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Atul K. Gupta ◽  
J. M. Seneviratne ◽  
G. K. Joshi ◽  
Anil Kumar

Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) in response to certain environmental conditions, play important role in mating type switching (Fus3) and pathogenicity (Pmk1) in many fungi. In order to determine the roles of such regulatory genes inTilletia indica, the causal pathogen of Karnal bunt (KB) of wheat, semi-quantitative and quantitative RT-PCR was carried out to isolate and determine the expression of MAP kinase homologues during fungal growth and development underin vitroculture. Maximum expression of TiFus3 and TiPmk1 genes were observed at 14th and 21st days of culture and decreased thereafter. To investigate whether the fungus alters the expression levels of same kinases upon interaction with plants, cultures were treated with 1% of host factors (extracted from S-2 stage of wheat spikes). Such treatment induced the expression of MAPks in time dependent manner compared to the absence of host factors. These results suggest that host factor(s) provide certain signal(s) which activate TiFus3 and TiPmk1 during morphogenetic development ofT. indica. The results also provides a clue about the role of host factors in enhancing the disease potential due to induction of MAP kinases involved in fungal development and pathogenecity.


2001 ◽  
Vol 8 (3) ◽  
pp. 165-169 ◽  
Author(s):  
A. Smicka ◽  
V. Buchta ◽  
K. Handlir

Six new N-substituted di- and tributyltin 2-aminoethanethiolates (cysteaminates) have been prepared and characterised by H1, C13 and S119n NMR spectroscopy. All these compounds exhibit a good in vitro antifungal effect against selected types of human pathogenic fungi (Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, Trichosporon beigelii, Aspergillus fumigatus, Absidia corymbifera, Trichophyton mentagrophytes) and their activity is comparable with that of some antifungal drugs commonly used in the clinical use like ketoconazole. The structure-activity relationships in these compounds are discussed.


2021 ◽  
Vol 44 (02) ◽  
Author(s):  
NGUYEN NGOC AN ◽  
HUA HUYNH MINH THAO ◽  
HO NGUYEN HOANG YEN ◽  
NGUYEN THI DIEU HANH ◽  
NGUYEN LE HIEN HOA ◽  
...  

Dragon fruit or pitahaya (Hylocereus spp.) are famous for their nutrient-rich favourable taste, which brings high economic value to subtropical and tropical countries. However, dragon fruit cultivation all over the world is threatened by fungal pathogens and among them, Neoscytalidium dimidiatum has recently been shown to be responsible for stem canker and fruit rot which cause big economic losses. In order to find an environmentally friendly way to control this pathogen, five out of sixty-nine bacterial isolates used in a screening test for antifungal activity were selected. All five strains appeared to be aerobic Gram positive spore forming bacteria suggesting that they all belong to the Bacillus genus. Cell-free culture supernatants of these strains were found to strongly inhibit both fungal spore germination and mycelia growth in vitro for at least 5 days. The strain D19 which possessed the highest antagonistic effect was further identified to be Bacillus amyloliquefaciens, a well-known species shown to have antifungal effect against several other pathogenic fungi. Thus, the results of this study opened a new promising perspective to prevent Neoscytalidium dimidiatum infection during cultivation of dragon fruit.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xinyi Lu ◽  
Xingli Wu ◽  
Lin Jing ◽  
Lingjia Tao ◽  
Yingxuan Zhang ◽  
...  

Objective. To analyze the active compounds, potential targets, and diseases of JianPi Fu Recipe (JPFR) based on network pharmacology and bioinformatics and verify the potential biological function and mechanism of JPFR in vitro and in vivo. Methods. Network pharmacology databases including TCMSP, TCM-PTD, TCMID, and DrugBank were used to screen the active compounds and potential drug targets of JPFR. Cytoscape 3.7 software was applied to construct the interaction network between active compounds and potential targets. The DAVID online database analysis was performed to investigate the potential effective diseases and involved signaling pathways according to the results of the GO function and KEGG pathways enrichment analysis. To ensure standardization and maintain interbatch reliability of JPFR, High Performance Liquid Chromatography (HPLC) was used to establish a “chemical fingerprint.” For biological function validation, the effect of JPFR on the proliferation and migration of CRC cells in vitro was investigated by CCK-8 and transwell and wound healing assay, and the effect of JPFR on the growth and metastasis of CRC cells in vivo was detected by building a lung metastasis model in nude mice and in vivo imaging. For the potential mechanism validation, the expressions of MALAT1, PTBP-2, and β-catenin in CRC cells and transplanted CRC tumors were detected by real-time PCR, western blot, and immunohistochemical staining analysis. Results. According to the rules of oral bioavailability (OB) > 30% and drug-likeness (DL) > 0.18, 244 effective compounds in JPFR were screened out, as well as the corresponding 132 potential drug targets. By the analysis of DAVID database, all these key targets were associated closely with the cancer diseases such as prostate cancer, colorectal cancer, bladder cancer, small cell lung cancer, pancreatic cancer, and hepatocellular carcinoma. In addition, multiple signaling pathways were closely related to JPFR, including p53, Wnt, PI3K-Akt, IL-17, HIF-1, p38-MAPK, NF-κB, PD-L1 expression and PD-1 checkpoint pathway, VEGF, JAK-STAT, and Hippo. The systematical analysis showed that various active compounds of JPFR were closely connected with Wnt/β-catenin, EGFR, HIF-1, TGFβ/Smads, and IL6-STAT3 signaling pathway, including kaempferol, isorhamnetin, calycosin, quercetin, medicarpin, phaseol, spinasterol, hederagenin, beta-sitosterol, wighteone, luteolin, and isotrifoliol. For in vitro experiments, the migration and growth of human CRC cells were inhibited by the JPFR extract in a dose-dependent way, and the expression of MALAT1, PTBP-2, β-catenin, MMP7, c-Myc, and Cyclin D1 in CRC cells were downregulated by the JPFR extract in a dose-dependent way. For in vivo metastasis experiments, the numbers of lung metastasis were found to be decreased by the JPFR extract in a dose-dependent manner, and the expressions of metastasis-associated genes including MALAT1, PTBP-2, β-catenin, and MMP7 in the lung metastases were downregulated dose dependently by the JPFR extract. For the orthotopic transplanted tumor experiments, the JPFR extract could inhibit the growth of orthotopic transplanted tumors and downregulate the expression of c-Myc and Cyclin D1 in a dose-dependent manner. Moreover, the JPFR extract could prolong the survival time of tumor-bearing mice in a dose-dependent manner. Conclusions. Through effective network pharmacology analysis, we found that JPFR contains many effective compounds which may directly target cancer-associated signaling pathways. The in vitro and in vivo experiments further confirmed that JPFR could inhibit the growth and metastasis of CRC cells by regulating β-catenin signaling-associated genes or proteins.


mBio ◽  
2015 ◽  
Vol 6 (3) ◽  
Author(s):  
Visesato Mor ◽  
Antonella Rella ◽  
Amir M. Farnoud ◽  
Ashutosh Singh ◽  
Mansa Munshi ◽  
...  

ABSTRACT Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N′-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N′-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. IMPORTANCE Fungal infections are a significant cause of morbidity and mortality worldwide. Current antifungal drugs suffer from various drawbacks, including toxicity, drug resistance, and narrow spectrum of activity. In this study, we have demonstrated that pharmaceutical inhibition of fungal glucosylceramide presents a new opportunity to treat cryptococcosis and various other fungal infections. In addition to being effective against pathogenic fungi, the compounds discovered in this study were well tolerated by animals and additive to current antifungals. These findings suggest that these drugs might pave the way for the development of a new class of antifungals.


2003 ◽  
Vol 2 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Arnaud Firon ◽  
François Villalba ◽  
Roland Beffa ◽  
Christophe d'Enfert

ABSTRACT The opportunistic pathogen Aspergillus fumigatus is the most frequent cause of deadly airborne fungal infections in developed countries. In order to identify novel antifungal-drug targets, we investigated the genome of A. fumigatus for genes that are necessary for efficient fungal growth. An artificial A. fumigatus diploid strain with one copy of an engineered impala160 transposon from Fusarium oxysporum integrated into its genome was used to generate a library of diploid strains by random in vivo transposon mutagenesis. Among 2,386 heterozygous diploid strains screened by parasexual genetics, 1.2% had a copy of the transposable element integrated into a locus essential for A. fumigatus growth. Comparison of genomic sequences flanking impala160 in these mutants with that of the genome of A. fumigatus allowed the characterization of 20 previously uncharacterized A. fumigatus genes. Among these, homologues of genes essential for Saccharomyces cerevisiae growth have been identified, as well as genes that do not have homologues in other fungal species. These results confirm that heterologous transposition using the transposable element impala is a powerful tool for functional genomics in ascomycota, and they pave the way for defining the complete set of essential genes in A. fumigatus, the first step toward target-based development of new antifungal drugs.


Sign in / Sign up

Export Citation Format

Share Document