scholarly journals Functional Ambivalence of Dendritic Cells: Tolerogenicity and Immunogenicity

2021 ◽  
Vol 22 (9) ◽  
pp. 4430
Author(s):  
Ji-Hee Nam ◽  
Jun-Ho Lee ◽  
So-Yeon Choi ◽  
Nam-Chul Jung ◽  
Jie-Young Song ◽  
...  

Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) and inducers of T cell-mediated immunity. Although DCs play a central role in promoting adaptive immune responses against growing tumors, they also establish and maintain peripheral tolerance. DC activity depends on the method of induction and/or the presence of immunosuppressive agents. Tolerogenic dendritic cells (tDCs) induce immune tolerance by activating CD4+CD25+Foxp3+ regulatory T (Treg) cells and/or by producing cytokines that inhibit T cell activation. These findings suggest that tDCs may be an effective treatment for autoimmune diseases, inflammatory diseases, and infertility.

1993 ◽  
Vol 90 (23) ◽  
pp. 11054-11058 ◽  
Author(s):  
D J Lenschow ◽  
G H Su ◽  
L A Zuckerman ◽  
N Nabavi ◽  
C L Jellis ◽  
...  

Effective T-cell activation requires antigen/major histocompatibility complex engagement by the T-cell receptor complex in concert with one or more costimulatory molecules. Recent studies have suggested that the B7 molecule, expressed on most antigen presenting cells, functions as a costimulatory molecule through its interaction with CD28 on T cells. Blocking the CD28/B7 interaction with CTLA4Ig inhibits T-cell activation in vitro and induces unresponsiveness. We demonstrate that another molecule(s), termed B7-2, is expressed constitutively on dendritic cells, is differentially regulated on B cells, and costimulates naive T cells responding to alloantigen. B7-2 is up-regulated by lipopolysaccharide in < 6 hr and is maximally expressed on the majority of B cells by 24 hr. In contrast, B7 is detected only on a subset of activated B cells late (48 hr) after stimulation. In addition, Con A directly induces B7-2 but not B7 expression on B cells. Finally, although both anti-B7 monoclonal antibodies and CTLA4Ig blocked T-cell proliferation to antigen-expressing B7 transfectants, only CTLA4Ig had any significant inhibitory effect on T-cell proliferation to antigens expressed on natural antigen presenting cells, such as dendritic cells. Thus, B7 is not the only costimulatory molecule capable of initiating T-cell responses since a second ligand, B7-2, can provide a necessary second signal for T-cell activation.


2001 ◽  
Vol 194 (6) ◽  
pp. 769-780 ◽  
Author(s):  
Daniel Hawiger ◽  
Kayo Inaba ◽  
Yair Dorsett ◽  
Ming Guo ◽  
Karsten Mahnke ◽  
...  

Dendritic cells (DCs) have the capacity to initiate immune responses, but it has been postulated that they may also be involved in inducing peripheral tolerance. To examine the function of DCs in the steady state we devised an antigen delivery system targeting these specialized antigen presenting cells in vivo using a monoclonal antibody to a DC-restricted endocytic receptor, DEC-205. Our experiments show that this route of antigen delivery to DCs is several orders of magnitude more efficient than free peptide in complete Freund's adjuvant (CFA) in inducing T cell activation and cell division. However, T cells activated by antigen delivered to DCs are not polarized to produce T helper type 1 cytokine interferon γ and the activation response is not sustained. Within 7 d the number of antigen-specific T cells is severely reduced, and the residual T cells become unresponsive to systemic challenge with antigen in CFA. Coinjection of the DC-targeted antigen and anti-CD40 agonistic antibody changes the outcome from tolerance to prolonged T cell activation and immunity. We conclude that in the absence of additional stimuli DCs induce transient antigen-specific T cell activation followed by T cell deletion and unresponsiveness.


Blood ◽  
2011 ◽  
Vol 117 (5) ◽  
pp. 1585-1594 ◽  
Author(s):  
Sagarika Chakrabarty ◽  
James T. Snyder ◽  
Jijia Shen ◽  
Hooman Azmi ◽  
Paul Q. Hu ◽  
...  

Abstract CD40L on CD4+ T cells plays a vital role in the activation of antigen-presenting cells, thus catalyzing a positive feedback loop for T-cell activation. Despite the pivotal juxtaposition of CD40L between antigen-presenting cells and T-cell activation, only a T-cell receptor stimulus is thought to be required for early CD40L surface expression. We show, for the first time, that CD40L expression on peripheral blood CD4+ T cells is highly dependent on a cell-cell interaction with CD14hiCD16− monocytes. Interactions with ICAM-1, LFA-3, and to a lesser extent CD80/CD86 contribute to this enhancement of CD40L expression but are not themselves sufficient. The contact-mediated increase in CD40L expression is dependent on new mRNA and protein synthesis. Circulating myeloid dendritic cells also possess this costimulatory activity. By contrast, CD14loCD16+ monocytes, plasmacytoid dendritic cells, B-cell lymphoma lines, and resting, activated, and Epstein-Barr virus–immortalized primary B cells all lack the capacity to up-regulate early CD40L. The latter indicates that a human B cell cannot activate its cognate T cell to deliver CD40L-mediated help. This finding has functional implications for the role of biphasic CD40L expression, suggesting that the early phase is associated with antigen-presenting cell activation, whereas the late phase is related to B-cell activation.


2020 ◽  
Vol 21 (21) ◽  
pp. 8291
Author(s):  
María Montes-Casado ◽  
Adrian Sanvicente ◽  
Laura Casarrubios ◽  
María José Feito ◽  
José M. Rojo ◽  
...  

Mesoporous bioactive glass nanospheres (NanoMBGs) have high potential for clinical applications. However, the impact of these nanoparticles on the immune system needs to be addressed. In this study, the biocompatibility of SiO2-CaO NanoMBGs was evaluated on different mouse immune cells, including spleen cells subsets, bone marrow-derived dendritic cells (BMDCs), or cell lines like SR.D10 Th2 CD4+ lymphocytes and DC2.4 dendritic cells. Flow cytometry and confocal microscopy show that the nanoparticles were rapidly and efficiently taken up in vitro by T and B lymphocytes or by specialized antigen-presenting cells (APCs) like dendritic cells (DCs). Nanoparticles were not cytotoxic and had no effect on cell viability or proliferation under T-cell (anti-CD3) or B cell (LPS) stimuli. Besides, NanoMBGs did not affect the balance of spleen cell subsets, or the production of intracellular or secreted pro- and anti-inflammatory cytokines (TNF-α, IFN-γ, IL-2, IL-6, IL-10) by activated T, B, and dendritic cells (DC), as determined by flow cytometry and ELISA. T cell activation surface markers (CD25, CD69 and Induced Costimulator, ICOS) were not altered by NanoMBGs. Maturation of BMDCs or DC2.4 cells in vitro was not altered by NanoMBGs, as shown by expression of Major Histocompatibility Complex (MHC) and costimulatory molecules (CD40, CD80, CD86), or IL-6 secretion. The effect of wortmannin and chlorpromazine indicate a role for phosphoinositide 3-kinase (PI3K), actin and clathrin-dependent pathways in NanoMBG internalization. We thus demonstrate that these NanoMBGs are both non-toxic and non-inflammagenic for murine lymphoid cells and myeloid DCs despite their efficient intake by the cells.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1302
Author(s):  
Dijana Djureinovic ◽  
Meina Wang ◽  
Harriet M. Kluger

CD40 is expressed on a variety of antigen-presenting cells. Stimulation of CD40 results in inflammation by upregulation of other costimulatory molecules, increased antigen presentation, maturation (licensing) of dendritic cells, and activation of CD8+ T cells. Here we analyzed gene expression data from The Cancer Genome Atlas in melanoma, renal cell carcinoma, and pancreatic adenocarcinoma and found correlations between CD40 and several genes involved in antigen presentation and T cell function, supporting further exploration of CD40 agonists to treat cancer. Agonist CD40 antibodies have induced anti-tumor effects in several tumor models and the effect has been more pronounced when used in combination with other treatments (immune checkpoint inhibition, chemotherapy, and colony-stimulating factor 1 receptor inhibition). The reduction in tumor growth and ability to reprogram the tumor microenvironment in preclinical models lays the foundation for clinical development of agonistic CD40 antibodies (APX005M, ChiLob7/4, ADC-1013, SEA-CD40, selicrelumab, and CDX-1140) that are currently being evaluated in early phase clinical trials. In this article, we focus on CD40 expression and immunity in cancer, agonistic human CD40 antibodies, and their pre-clinical and clinical development. With the broad pro-inflammatory effects of CD40 and its ligand on dendritic cells and macrophages, and downstream B and T cell activation, agonists of this pathway may enhance the anti-tumor activity of other systemic therapies.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3232-3232
Author(s):  
Mark-Alexander Schwarzbich ◽  
Michael Gutknecht ◽  
Lisa Guettler ◽  
Lothar Kanz ◽  
Helmut R. Salih ◽  
...  

Abstract Abstract 3232 Osteoactivin, also known as transmembrane glycoprotein NMB (GPNMB) and dendritic cell-associated transmembrane protein (DC-HIL), is a type I transmembrane glycoprotein that is detected abundantly in dendritic cells (DC), but not or only at low levels in monocytes. Its expression on antigen-presenting cells (APC) can inhibit T cell activation by binding the type I transmembrane proteoglycan syndecan-4 (SD-4) on T cells. We here studied the influence of different therapeutically used immunosuppressive agents such as the corticosteroid prednisolone and the calcineurin inhibitors tacrolimus or cyclosporine A on the expression of osteoactivin in human monocyte-derived DC. Therefore, DC were generated from blood monocytes isolated by plastic adherence and exposed to GM-CSF and IL-4. Prednisolone, tacrolimus or cyclosporine A were added to the culture medium at concentrations obtained upon clinical application in patients (cyclosporine A: 1μg/ml, prednisolone: 3.5μg/ml, tacrolimus: 10ng/ml) every second day starting from the first day of culture. Cells were harvested for immunophenotyping and osteoactivin expression analysis by immunostaining, western-blotting and real-time RT-PCR or for functional analyses in mixed lymphocyte reactions (MLR) on day 7 of culture. DC generated in the presence of therapeutic concentrations of the immunosuppressant drugs showed a reduced expression of CD1a. Furthermore, we observed a clear upregulation of osteoactivin on DC that had been treated with the immunosuppressive agents. In line with osteoactivin up-regulation, exposure to the immunosuppressive drugs resulted in reduced stimulatory capacity of the DC in MLR with allogenic T cells, and this could be restored by addition of blocking osteoactivin antibody. In summary, our results demonstrate that upregulation of osteoactivin is critically involved in the inhibition of DC function upon exposure to different classes of immunosuppressive agents. These findings suggest that upregulation of osteoactivin in DC constitutes a ubiquitous mechanism that may underlie inhibition of T cell activation by these drugs. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 38 (4) ◽  
pp. 957-967 ◽  
Author(s):  
Frank A. Schildberg ◽  
Silke I. Hegenbarth ◽  
Beatrix Schumak ◽  
Andreas Limmer ◽  
Percy A. Knolle

Blood ◽  
2013 ◽  
Vol 121 (26) ◽  
pp. 5184-5191 ◽  
Author(s):  
Catherine E. Terrell ◽  
Michael B. Jordan

Key PointsDefects in perforin and related genes lead to abnormal T-cell activation and are associated with HLH. The physiological mechanism by which perforin protects from HLH involves CD8+ T-cell elimination of rare antigen-presenting dendritic cells.


2000 ◽  
Vol 192 (7) ◽  
pp. 1027-1034 ◽  
Author(s):  
Gordon J. Freeman ◽  
Andrew J. Long ◽  
Yoshiko Iwai ◽  
Karen Bourque ◽  
Tatyana Chernova ◽  
...  

PD-1 is an immunoinhibitory receptor expressed by activated T cells, B cells, and myeloid cells. Mice deficient in PD-1 exhibit a breakdown of peripheral tolerance and demonstrate multiple autoimmune features. We report here that the ligand of PD-1 (PD-L1) is a member of the B7 gene family. Engagement of PD-1 by PD-L1 leads to the inhibition of T cell receptor–mediated lymphocyte proliferation and cytokine secretion. In addition, PD-1 signaling can inhibit at least suboptimal levels of CD28-mediated costimulation. PD-L1 is expressed by antigen-presenting cells, including human peripheral blood monocytes stimulated with interferon γ, and activated human and murine dendritic cells. In addition, PD-L1 is expressed in nonlymphoid tissues such as heart and lung. The relative levels of inhibitory PD-L1 and costimulatory B7-1/B7-2 signals on antigen-presenting cells may determine the extent of T cell activation and consequently the threshold between tolerance and autoimmunity. PD-L1 expression on nonlymphoid tissues and its potential interaction with PD-1 may subsequently determine the extent of immune responses at sites of inflammation.


Sign in / Sign up

Export Citation Format

Share Document