scholarly journals Molecular Hydrogen as a Novel Protective Agent against Pre-Symptomatic Diseases

2021 ◽  
Vol 22 (13) ◽  
pp. 7211
Author(s):  
Haru Yamamoto ◽  
Yusuke Ichikawa ◽  
Shin-ichi Hirano ◽  
Bunpei Sato ◽  
Yoshiyasu Takefuji ◽  
...  

Mibyou, or pre-symptomatic diseases, refers to state of health in which a disease is slowly developing within the body yet the symptoms are not apparent. Common examples of mibyou in modern medicine include inflammatory diseases that are caused by chronic inflammation. It is known that chronic inflammation is triggered by the uncontrolled release of proinflammatory cytokines by neutrophils and macrophages in the innate immune system. In a recent study, it was shown that molecular hydrogen (H2) has the ability to treat chronic inflammation by eliminating hydroxyl radicals (·OH), a mitochondrial reactive oxygen species (ROS). In doing so, H2 suppresses oxidative stress, which is implicated in several mechanisms at the root of chronic inflammation, including the activation of NLRP3 inflammasomes. This review explains these mechanisms by which H2 can suppress chronic inflammation and studies its applications as a protective agent against different inflammatory diseases in their pre-symptomatic state. While mibyou cannot be detected nor treated by modern medicine, H2 is able to suppress the pathogenesis of pre-symptomatic diseases, and thus exhibits prospects as a novel protective agent.

2010 ◽  
Vol 1 (3) ◽  
pp. 114-121
Author(s):  
Sim K Singhrao ◽  
St John Crean

The commonality in periodontitis with diverse inflammatory diseases is the silent emergence of pathology within the affected organ suggestive of a continual lowgrade chronic inflammation. The systemic circulation appears to be the conduit that disseminates inflammatory effectors from a given site to distant organs. Although definitive evidence remains tantalisingly out of reach, the inflammatory link between periodontitis and diseases such as atherosclerosis, rheumatoid arthritis and Alzheimer’s disease, involving cellular and humoral components of the innate immune response, is highly plausible.


2021 ◽  
Vol 22 (5) ◽  
pp. 2549 ◽  
Author(s):  
Shin-ichi Hirano ◽  
Yusuke Ichikawa ◽  
Bunpei Sato ◽  
Haru Yamamoto ◽  
Yoshiyasu Takefuji ◽  
...  

Mitochondria are the largest source of reactive oxygen species (ROS) and are intracellular organelles that produce large amounts of the most potent hydroxyl radical (·OH). Molecular hydrogen (H2) can selectively eliminate ·OH generated inside of the mitochondria. Inflammation is induced by the release of proinflammatory cytokines produced by macrophages and neutrophils. However, an uncontrolled or exaggerated response often occurs, resulting in severe inflammation that can lead to acute or chronic inflammatory diseases. Recent studies have reported that ROS activate NLRP3 inflammasomes, and that this stimulation triggers the production of proinflammatory cytokines. It has been shown in literature that H2 can be based on the mechanisms that inhibit mitochondrial ROS. However, the ability for H2 to inhibit NLRP3 inflammasome activation via mitochondrial oxidation is poorly understood. In this review, we hypothesize a possible mechanism by which H2 inhibits mitochondrial oxidation. Medical applications of H2 may solve the problem of many chronic inflammation-based diseases, including coronavirus disease 2019 (COVID-19).


2021 ◽  
Vol 12 ◽  
Author(s):  
Hannes Lindahl ◽  
Tomas Olsson

Interleukin-22 (IL-22) is secreted by a wide range of immune cells and its downstream effects are mediated by the IL-22 receptor, which is present on non-immune cells in many organs throughout the body. IL-22 is an inflammatory mediator that conditions the tissue compartment by upregulating innate immune responses and is also a homeostatic factor that promotes tissue integrity and regeneration. Interestingly, the IL-22 system has also been linked to many T cell driven inflammatory diseases. Despite this, the downstream effects of IL-22 on the adaptive immune system has received little attention. We have reviewed the literature for experimental data that suggest IL-22 mediated effects on T cells, either transduced directly or via mediators expressed by innate immune cells or non-immune cells in response to IL-22. Collectively, the reviewed data indicate that IL-22 has a hitherto unappreciated influence on T helper cell polarization, or the secretion of signature cytokines, that is context dependent but in many cases results in a reduction of the Th1 type response and to some extent promotion of regulatory T cells. Further studies are needed that specifically address these aspects of IL-22 signaling, which can benefit the understanding and treatment of a wide range of diseases.


2021 ◽  
Author(s):  
Giulia Rinaldi ◽  
Neila Alvarez de Haro ◽  
Andrew Paul Desbois ◽  
Calum T. Robb ◽  
Adriano G. Rossi

Fish erythrocytes remain nucleated for their life-span, unlike mammalian erythrocytes which undergo enucleation. Asides transportation of oxygen, fish erythrocytes are capable of several immune defence processes. Nucleated fish erythrocytes represent prime candidates for carrying out ETotic responses. ETosis is an evolutionary conserved innate immune defence process found in both vertebrates and invertebrates, which involves the extrusion of DNA studded with antimicrobial proteins into the extracellular space serving to trap and kill microorganisms. In this report, we demonstrate that fish erythrocytes isolated from Danio rerio (zebrafish) produce ETotic-like responses when exposed to chemical and physiological stimuli. Salmo salar (Atlantic salmon) erythrocytes produce similar ETotic responses. We have termed these ET-like formations Fish Erythrocyte Extracellular Traps (FEETs). Interestingly, we discovered that mammalian inducers of NETosis, such as the protein kinase C (PKC) activator phorbol 12‐myristate 13‐acetate and the calcium ionophore ionomycin induced FEETs. Moreover, we found that FEETs are dependent upon activation of PKC and generation of mitochondrial reactive oxygen species. Thus, this brief report represents the first demonstration that fish erythrocytes can exhibit ETotic-like responses, unveiling a previously unknown function of nucleated erythrocytes, and sheds new light on the innate immune arsenal of erythrocytes.


2019 ◽  
pp. 1-9 ◽  
Author(s):  
Quratul Ann

Neutrophils are an integral part of innate immune response system, abundantly present in blood circulation. They are the primary responders to the injury or intruding pathogens in human body. Neutrophils engulf infectious microorganisms by the process of phagocytosis, which usually initiates the production of reactive oxygen species and adhere the neutrophilic antimicrobial granules with vacuoles containing pathogens. Upon activation, neutrophils also render signals for stimulation and maturation of macrophages and dendritic cells. They release neutrophil extracellular traps for the suppression of infection and inflammation along with other antimicrobial molecules. The antimicrobials that are present in neutrophil extracellular traps not only eradicate microbes but also moderately contribute to the pathogenesis of various diseases such as destruction of tissue observed in periodontitis. Genetic shortcomings in neutrophils with respect to their chemotaxis, migration and phagocytosis become evident as severe forms of periodontitis, thus highlighting their role in innate immunity. Therefore, the present review is undertaken to highlight the importance of production and release of neutrophil extracellular trap in the regulation of immune reaction and its role in periodontal disease. A comprehensive database search was performed to gather all the relevant data related to the action of neutrophil and neutrophil extracellular traps in various inflammatory diseases with special emphasis on periodontitis.


2020 ◽  
pp. 45-52
Author(s):  
S. Schetinin

The analysis of the clinical and immunological effectiveness of ozone therapy is carried out. The mechanism of the bactericidal action of ozone in the treatment of infectious and inflammatory diseases of a bacterial and viral nature is analyzed. Ozonation of oils leads to the formation of a complex and heterogeneous cascade of components. Ozonides provide the body with some prolonged supply of active oxygen to maintain aerobic metabolism and the required level of energy substrates.


Sign in / Sign up

Export Citation Format

Share Document