scholarly journals Heme Burden and Ensuing Mechanisms That Protect the Kidney: Insights from Bench and Bedside

2021 ◽  
Vol 22 (15) ◽  
pp. 8174
Author(s):  
József Balla ◽  
Abolfazl Zarjou

With iron at its core, the tetrapyrrole heme ring is a cardinal prosthetic group made up of many proteins that participate in a wide array of cellular functions and metabolism. Once released, due to its pro-oxidant properties, free heme in sufficient amounts can result in injurious effects to the kidney and other organs. Heme oxygenase-1 (HO-1) has evolved to promptly attend to such injurious potential by facilitating degradation of heme into equimolar amounts of carbon monoxide, iron, and biliverdin. HO-1 induction is a beneficial response to tissue injury in diverse animal models of diseases, including those that affect the kidney. These protective attributes are mainly due to: (i) prompt degradation of heme leading to restraining potential hazardous effects of free heme, and (ii) generation of byproducts that along with induction of ferritin have proven beneficial in a number of pathological conditions. This review will focus on describing clinical aspects of some of the conditions with the unifying end-result of increased heme burden and will discuss the molecular mechanisms that ensue to protect the kidneys.

2019 ◽  
Vol 2 (2) ◽  
pp. 158-184 ◽  
Author(s):  
Palash K Pal ◽  
Bharati Bhattacharjee ◽  
Aindrila Chattopadhyay ◽  
Debasish Bandyopadhyay

The excessive production of free radicals and/or reactive oxygen species (ROS) in gastrointestinal (GI) tract leads to oxidative damages in GI tissues with development of varied pathological conditions and clinical symptoms. Many endogenous as well as exogenous factors are involved in such pathogenesis, herein, focus was given to the factors of metal toxicity, non-steroidal anti-inflammatory drugs (NSAIDs), ischemia-reperfusion, consumption of high fat diet and alcohol, and different pathological conditions and diseases. Since ROS is more or less involved in the GI damages caused by these factors, therefore attempts have been made to develop appropriate therapeutic agents that possess antioxidant properties. Being a potent antioxidant and free radical scavenger, melatonin was suggested as a potent therapeutic answer to these GI damages. The discovery of different binding sites and receptors of melatonin in the GI tissues further proves its local actions to protect these tissues from oxidative stress.  In the review, we attempt to try our best to summarize the current developments regarding the GI injuries caused by oxidative stress and the potential beneficial effects of melatonin on these injuries. The important molecular mechanisms associated with these changes were also highlighted in the discussion. We hope that this review will provide valuable information to consider melatonin as a suitable molecule used for GI tract protection.


2003 ◽  
Vol 285 (3) ◽  
pp. F515-F523 ◽  
Author(s):  
Nathalie Hill-Kapturczak ◽  
Eric Sikorski ◽  
Christy Voakes ◽  
Jairo Garcia ◽  
Harry S. Nick ◽  
...  

Heme oxygenase-1 (HO-1) catalyzes the rate-limiting step in heme degradation, releasing iron, carbon monoxide, and biliverdin. Induction of HO-1 is an adaptive and beneficial response in renal and nonrenal settings of tissue injury. The purpose of this study was to characterize the regulation of the human HO-1 gene in renal proximal tubule and aortic endothelial cells in response to heme and cadmium. Evaluation of multiple human HO-1 promoter-reporter constructs up to -9.1 kb demonstrated only a partial response to heme and cadmium. In an effort to mimic endogenous stimulus-dependent levels of HO-1 induction, we evaluated the entire 12.5 kb of the human HO-1 gene, including introns and exons, in conjunction with a -4.5-kb human HO-1 promoter and observed significant heme- and cadmium-mediated induction of the reporter gene, suggesting the presence of an internal enhancer. Enhancer function was orientation independent and required a region between -3.5 and -4.5 kb of the human HO-1 promoter. Our studies identified a novel enhancer internal to the human HO-1 gene that, in conjunction with the HO-1 promoter, recapitulates heme- and cadmium-mediated induction of the endogenous HO-1 gene. Elucidation of the molecular regulation of the human HO-1 gene will allow for the development of therapeutic strategies to manipulate HO-1 gene expression in pathological states.


2020 ◽  
Vol 103 (1) ◽  
pp. 126-134 ◽  
Author(s):  
Nicole Meyer ◽  
Stefanie Langwisch ◽  
Markus Scharm ◽  
Ana Claudia Zenclussen

Abstract The enzyme heme oxygenase-1 (HO-1), encoded by the HMOX1 gene, mediates heme catabolism by cleaving free heme. We have previously revealed the importance of HO-1 in pregnancy. Here, we determined the impact of maternal or paternal HO-1 deficiency on fetal growth and placental parameters throughout gestation. We mated Hmox1-sufficient (WT), partial (HET)-, or total (KO)-deficient BALB/c female mice with Hmox1-WT or -KO BALB/c males and performed ultrasound analysis to monitor placental and fetal growth. Doppler measurements were used to determine maternal blood flow parameters. Offspring weights and feto-placental indices (FPI) were also determined. We found a significantly increased number of underdeveloped fetuses at gd10 in HET females that were mated with WT males compared with WT × WT pairings. At the same gestational age, underdeveloped placentas could be detected in HET females mated with KO males. Many fetuses from the KO × KO combination died in utero between gd12 and gd14. At gd14, abnormal placental parameters were found in surviving fetuses, which had significant reduced weights. Moreover, only 3.11% female and 5.33% male KO pups resulted from 10 HET × HET breeding pairs over 1 year. Our results show that HO-1 from both maternal and paternal origins is important for proper placental and fetal growth. Placental growth restriction and occurrence of abortions in mice that were partially or totally deficient in HO-1 were recorded in vivo from gd10 onwards. Future studies will focus on elucidating the cellular and molecular mechanisms behind these observations.


2003 ◽  
Vol 197 (12) ◽  
pp. 1701-1707 ◽  
Author(s):  
Petronela Ancuta ◽  
Ravi Rao ◽  
Ashlee Moses ◽  
Andrew Mehle ◽  
Sunil K. Shaw ◽  
...  

CD16+ monocytes represent 5–10% of peripheral blood monocytes in normal individuals and are dramatically expanded in several pathological conditions including sepsis, human immunodeficiency virus 1 infection, and cancer. CD16+ monocytes produce high levels of proinflammatory cytokines and may represent dendritic cell precursors in vivo. The mechanisms that mediate the recruitment of CD16+ monocytes into tissues remain unknown. Here we investigate molecular mechanisms of CD16+ monocyte trafficking and show that migration of CD16+ and CD16− monocytes is mediated by distinct combinations of adhesion molecules and chemokine receptors. In contrast to CD16− monocytes, CD16+ monocytes expressed high CX3CR1 and CXCR4 but low CCR2 and CD62L levels and underwent efficient transendo-thelial migration in response to fractalkine (FKN; FKN/CX3CL1) and stromal-derived factor 1α (CXCL12) but not monocyte chemoattractant protein 1 (CCL2). CD16+ monocytes arrested on cell surface–expressed FKN under flow with higher frequency compared with CD16− monocytes. These results demonstrate that FKN preferentially mediates arrest and migration of CD16+ monocytes and suggest that recruitment of this proinflammatory monocyte subset to vessel walls via the CX3CR1-FKN pathway may contribute to vascular and tissue injury during pathological conditions.


2017 ◽  
Vol 38 (2) ◽  
pp. 262-273 ◽  
Author(s):  
Jenna L Leclerc ◽  
Andrew S Lampert ◽  
Claudia Loyola Amador ◽  
Brandon Schlakman ◽  
Terrie Vasilopoulos ◽  
...  

Hemoglobin (Hb) toxicity precipitates secondary brain damage following intracerebral hemorrhage (ICH). CD163 is an anti-inflammatory Hb scavenger receptor and CD163-positive macrophages/microglia locally accumulate post-bleed, yet no studies have investigated the role of CD163 after ICH. ICH was induced in wildtype and CD163−/− mice and various anatomical and functional outcomes were assessed. At 3 d, CD163−/− mice have 43.4 ± 5.0% (p = 0.0002) and 34.8 ± 3.4% (p = 0.0003) less hematoma volume and tissue injury, respectively. Whereas, at 10 d, CD163−/− mice have 49.2 ± 15.0% larger lesions (p = 0.0385). An inflection point was identified, where CD163−/− mice perform better on neurobehavioral testing and have less mortality before 4 d, but increased mortality and worse function after 4 d (p = 0.0389). At 3 d, CD163−/− mice have less Hb, iron, and blood–brain barrier dysfunction, increased astrogliosis and neovascularization, and no change in heme oxygenase 1 (HO1) expression. At 10 d, CD163−/− mice have increased iron and VEGF immunoreactivity, but no significant change in HO1 or astrogliosis. These novel findings reveal that CD163 deficiency has distinct temporal influences following ICH, with early beneficial properties but delayed injurious effects. While it is unclear why CD163 deficiency is initially beneficial, the late injurious effects are consistent with the key anti-inflammatory role of CD163 in the recovery phase of tissue damage.


1996 ◽  
Vol 16 (02) ◽  
pp. 114-138 ◽  
Author(s):  
R. E. Scharf

SummarySpecific membrane glycoproteins (GP) expressed by the megakaryocyte-platelet system, including GPIa-lla, GPIb-V-IX, GPIIb-llla, and GPIV are involved in mediat-ing platelet adhesion to the subendothelial matrix. Among these glycoproteins, GPIIb-llla plays a pivotal role since platelet aggregation is exclusively mediated by this receptor and its interaction with soluble macromolecular proteins. Inherited defects of the GPIIb-llla or GPIb-V-IX receptor complexes are associated with bleeding disorders, known as Glanzmann's thrombasthenia, Bernard-Soulier syndrome, or platelet-type von Willebrand's disease, respectively. Using immuno-chemical and molecular biology techniques, rapid advances in our understanding of the molecular genetic basis of these disorders have been made during the last few years. Moreover, analyses of patients with congenital platelet membrane glycoprotein abnormalities have provided valuable insights into molecular mechanisms that are required for structural and functional integrity, normal biosynthesis of the glycoprotein complexes and coordinated membrane expression of their constituents. The present article reviews the current state of knowledge of the major membrane glycoproteins in health and disease. The spectrum of clinical bleeding manifestations and established diagnostic criteria for each of these dis-orders are summarized. In particular, the variety of molecular defects that have been identified so far and their genetic basis will be discussed.


2020 ◽  
Vol 19 (2) ◽  
pp. 133-138
Author(s):  
Wenyu Chen ◽  
Hui He

Trilobatin is a natural plant-derived glycosylated flavonoid that has been shown to exhibit multiple beneficial pharmacologic activities including protection of heart against H/R-induced cardiomyocyte injury. However, the molecular mechanisms underlying protection from H/R-induced cardiomyocyte injury remain unknown. Using H9C2 cells as a model, we examined the effect of trilobatin on H/R-induced cellular injury, apoptosis, and generation of reactive oxygen species. The results showed that trilobatin protected H9C2 cells not only from cell death and apoptosis, but also counteracted H/R-induced changes in malondialdehyde, superoxide dismutase, glutathione, and glutathione peroxidase. The evaluation of the mechanism underlying the effect of trilobatin on protection from H/R-induced cellular injury suggested changes in the regulation of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yunkyoung Lee ◽  
Hee-Sook Jun ◽  
Yoon Sin Oh

The extract of Psoralea corylifolia seeds (PCE) has been widely used as a herbal medicine because of its beneficial effect on human health. In this study, we investigated the protective effects and molecular mechanisms of PCE on palmitate- (PA-) induced toxicity in PC12 cells, a neuron-like cell line. PCE significantly increased cell viability in PA-treated PC12 cells and showed antiapoptotic effects, as evidenced by decreased expression of cleaved caspase-3, cleaved poly(ADP-ribose) polymerase, and bax protein as well as increased expression of bcl-2 protein. In addition, PCE treatment reduced PA-induced reactive oxygen species production and upregulated mRNA levels of antioxidant genes such as nuclear factor (erythroid-derived 2)-like 2 and heme oxygenase 1. Moreover, PCE treatment recovered the expression of autophagy marker genes such as beclin-1 and p62, which was decreased by PA treatment. Treatment with isopsoralen, one of the major components of PCE extract, also recovered the expression of autophagy marker genes and reduced PA-induced apoptosis. In conclusion, PCE exerts protective effects against lipotoxicity via its antioxidant function, and this effect is mediated by activation of autophagy. PCE might be a potential pharmacological agent to protect against neuronal cell injury caused by oxidative stress or lipotoxicity.


2021 ◽  
Vol 22 (9) ◽  
pp. 4617
Author(s):  
Styliana Kyriakoudi ◽  
Anthi Drousiotou ◽  
Petros P. Petrou

Mitochondria are dynamic organelles, the morphology of which is tightly linked to their functions. The interplay between the coordinated events of fusion and fission that are collectively described as mitochondrial dynamics regulates mitochondrial morphology and adjusts mitochondrial function. Over the last few years, accruing evidence established a connection between dysregulated mitochondrial dynamics and disease development and progression. Defects in key components of the machinery mediating mitochondrial fusion and fission have been linked to a wide range of pathological conditions, such as insulin resistance and obesity, neurodegenerative diseases and cancer. Here, we provide an update on the molecular mechanisms promoting mitochondrial fusion and fission in mammals and discuss the emerging association of disturbed mitochondrial dynamics with human disease.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 332
Author(s):  
Valentina Brillo ◽  
Leonardo Chieregato ◽  
Luigi Leanza ◽  
Silvia Muccioli ◽  
Roberto Costa

Mitochondria are key intracellular organelles involved not only in the metabolic state of the cell, but also in several cellular functions, such as proliferation, Calcium signaling, and lipid trafficking. Indeed, these organelles are characterized by continuous events of fission and fusion which contribute to the dynamic plasticity of their network, also strongly influenced by mitochondrial contacts with other subcellular organelles. Nevertheless, mitochondria release a major amount of reactive oxygen species (ROS) inside eukaryotic cells, which are reported to mediate a plethora of both physiological and pathological cellular functions, such as growth and proliferation, regulation of autophagy, apoptosis, and metastasis. Therefore, targeting mitochondrial ROS could be a promising strategy to overcome and hinder the development of diseases such as cancer, where malignant cells, possessing a higher amount of ROS with respect to healthy ones, could be specifically targeted by therapeutic treatments. In this review, we collected the ultimate findings on the blended interplay among mitochondrial shaping, mitochondrial ROS, and several signaling pathways, in order to contribute to the dissection of intracellular molecular mechanisms involved in the pathophysiology of eukaryotic cells, possibly improving future therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document