scholarly journals Regulatory Mechanisms of Anthocyanin Biosynthesis in Apple and Pear

2021 ◽  
Vol 22 (16) ◽  
pp. 8441
Author(s):  
Huimin Liu ◽  
Zijin Liu ◽  
Yu Wu ◽  
Lamei Zheng ◽  
Genfa Zhang

Anthocyanins contribute to the quality and flavour of fruits. They are produced through the phenylpropanoid pathway, which is regulated by specific key genes that have been identified in many species. The dominant anthocyanin forms are reversibly transformed at different pH states, thus forming different colours in aqueous solutions. In plants, anthocyanins are controlled by specific factors of the biosynthetic pathway: light, temperature, phytohormones and transcription factors. Although great progress in research on anthocyanin structures and the regulation of anthocyanin biosynthesis has been made, the molecular regulatory mechanisms of anthocyanin biosynthesis in different plants remain less clear. In addition, the co-regulation of anthocyanin biosynthesis is poorly understood. In this review, we summarise previous findings on anthocyanin biosynthesis, including the biochemical and biological features of anthocyanins; differences in anthocyanin biosynthesis among fruit species, i.e., apple, red pear, and the model plant Arabidopsis thaliana; and the developmental and environmental regulation of anthocyanin accumulation. This review reveals the molecular mechanisms underlying anthocyanin biosynthesis in different plant species and provides valuable information for the development of anthocyanin-rich red-skinned and red-fleshed apple and pear varieties.

Author(s):  
Xuhui Chen ◽  
Kai Liu ◽  
Wen Xu ◽  
Gang Zhou ◽  
Chengfu Yuan

Background: Long non-coding RNA rhabdomyosarcoma 2-associated transcript (LncRNA RMST) will affect every aspect of tumor progression, such as proliferation, translocation and apoptosis. As a result, RMST can be used as an attractive biomarker for early diagnosis and clinical therapies of different disease states. This article aims to review pathophysiological functions, molecular mechanisms as well as promising biotherapies of RMST in multiple tumors. Methods: Through the systematic induction and summary of 46 papers published in PubMed concerning this study, the molecular mechanisms of RMST in all kinds of tumors have been reviewed. Results: LncRNA RMST is a tumor-related regulatory mediator, aberrantly expressed in diverse tumors, regarding medullary thyroid cancer, hepatocellular carcinoma, endometrial carcinoma, colon cancer, pancreatic cancer, glioma, Wilm’s tumor and breast cancer. Furthermore, as a mechanism-based player, RMST probably guides the translation and post-translation modification, containing DNA methylation and SUMOylation. It is capable of regulating distinct tumor cells and stem cells of biological behaviors via various molecular pathways. Conclusion: LncRNA RMST, potentially as an original therapeutic target, is valuable in the occurrence, development and apoptosis of different tumors.


2020 ◽  
Vol 21 (18) ◽  
pp. 6537
Author(s):  
Manjulatha Mekapogu ◽  
Bala Murali Krishna Vasamsetti ◽  
Oh-Keun Kwon ◽  
Myung-Suk Ahn ◽  
Sun-Hyung Lim ◽  
...  

Chrysanthemum (Chrysanthemum morifolium) is an economically important ornamental crop across the globe. As floral color is the major factor determining customer selection, manipulation of floral color has been a major objective for breeders. Anthocyanins are one of the main pigments contributing to a broad variety of colors in the ray florets of chrysanthemum. Manipulating petal pigments has resulted in the development of a vast range of floral colors. Although the candidate genes involved in anthocyanin biosynthesis have been well studied, the genetic and transcriptional control of floral color remains unclear. Despite advances in multi-omics technology, these methods remain in their infancy in chrysanthemum, owing to its large complex genome and hexaploidy. Hence, there is a need to further elucidate and better understand the genetic and molecular regulatory mechanisms in chrysanthemum, which can provide a basis for future advances in breeding for novel and diverse floral colors in this commercially beneficial crop. Therefore, this review describes the significance of anthocyanins in chrysanthemum flowers, and the mechanism of anthocyanin biosynthesis under genetic and environmental factors, providing insight into the development of novel colored ray florets. Genetic and molecular regulatory mechanisms that control anthocyanin biosynthesis and the various breeding efforts to modify floral color in chrysanthemum are detailed.


2022 ◽  
Vol 23 (2) ◽  
pp. 764
Author(s):  
Carlos García-Padilla ◽  
Ángel Dueñas ◽  
Virginio García-López ◽  
Amelia Aránega ◽  
Diego Franco ◽  
...  

Deep whole genome and transcriptome sequencing have highlighted the importance of an emerging class of non-coding RNA longer than 200 nucleotides (i.e., long non-coding RNAs (lncRNAs)) that are involved in multiple cellular processes such as cell differentiation, embryonic development, and tissue homeostasis. Cancer is a prime example derived from a loss of homeostasis, primarily caused by genetic alterations both in the genomic and epigenetic landscape, which results in deregulation of the gene networks. Deregulation of the expression of many lncRNAs in samples, tissues or patients has been pointed out as a molecular regulator in carcinogenesis, with them acting as oncogenes or tumor suppressor genes. Herein, we summarize the distinct molecular regulatory mechanisms described in literature in which lncRNAs modulate carcinogenesis, emphasizing epigenetic and genetic alterations in particular. Furthermore, we also reviewed the current strategies used to block lncRNA oncogenic functions and their usefulness as potential therapeutic targets in several carcinomas.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Tatiana P. Resende ◽  
Raquel P. Andrade ◽  
Isabel Palmeirim

All vertebrate species present a segmented body, easily observed in the vertebrate column and its associated components, which provides a high degree of motility to the adult body and efficient protection of the internal organs. The sequential formation of the segmented precursors of the vertebral column during embryonic development, the somites, is governed by an oscillating genetic network, the somitogenesis molecular clock. Herein, we provide an overview of the molecular clock operating during somite formation and its underlying molecular regulatory mechanisms. Human congenital vertebral malformations have been associated with perturbations in these oscillatory mechanisms. Thus, a better comprehension of the molecular mechanisms regulating somite formation is required in order to fully understand the origin of human skeletal malformations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yu Zhang ◽  
Christopher D. Kontos ◽  
Brian H. Annex ◽  
Aleksander S. Popel

AbstractThe Ang–Tie signaling pathway is an important vascular signaling pathway regulating vascular growth and stability. Dysregulation in the pathway is associated with vascular dysfunction and numerous diseases that involve abnormal vascular permeability and endothelial cell inflammation. The understanding of the molecular mechanisms of the Ang–Tie pathway has been limited due to the complex reaction network formed by the ligands, receptors, and molecular regulatory mechanisms. In this study, we developed a mechanistic computational model of the Ang–Tie signaling pathway validated against experimental data. The model captures and reproduces the experimentally observed junctional localization and downstream signaling of the Ang–Tie signaling axis, as well as the time-dependent role of receptor Tie1. The model predicts that Tie1 modulates Tie2’s response to the context-dependent agonist Ang2 by junctional interactions. Furthermore, modulation of Tie1’s junctional localization, inhibition of Tie2 extracellular domain cleavage, and inhibition of VE-PTP are identified as potential molecular strategies for potentiating Ang2’s agonistic activity and rescuing Tie2 signaling in inflammatory endothelial cells.


2021 ◽  
Vol 189 ◽  
pp. 112822
Author(s):  
Reinmar Eggers ◽  
Alexandra Jammer ◽  
Shalinee Jha ◽  
Bianca Kerschbaumer ◽  
Majd Lahham ◽  
...  

2021 ◽  
Vol 27 ◽  
Author(s):  
Li-Ping Yu ◽  
Ting-Ting Shi ◽  
Yan-Qin Li ◽  
Jian-Kang Mu ◽  
Ya-Qin Yang ◽  
...  

: Mitophagy plays an important role in maintaining mitochondrial quality and cell homeostasis through the degradation of damaged, aged, and dysfunctional mitochondria and misfolded proteins. Many human diseases, particularly neurodegenerative diseases, are related to disorders of mitochondrial phagocytosis. Exploring the regulatory mechanisms of mitophagy is of great significance for revealing the molecular mechanisms underlying the related diseases. Herein, we summarize the major mechanisms of mitophagy, the relationship of mitophagy with human diseases, and the role of traditional Chinese medicine (TCM) in mitophagy. These discussions enhance our knowledge of mitophagy and its potential therapeutic targets using TCM.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Xiaochun Xue ◽  
Jianhua Wu ◽  
Junhui Li ◽  
Jianguo Xu ◽  
Haiying Dai ◽  
...  

It was previously reported that the expression of CD274 was down-regulated in psoriatic epidermis, leading to immune disorders of psoriasis. However, the regulatory mechanisms of CD274 were rarely elucidated. We aimed to explore the regulatory mechanisms of CD274. Skin samples were collected from 18 patients with psoriasis vulgaris and 9 healthy participants for RNA sequencing. Candidate genes were chosen based on degree and k-core difference of genes in the co-expression network. The relations between candidate genes and CD274 were validated by flow cytometry and real-time PCR in primary human epidermal keratinocytes. The therapeutic effect of indirubin was assessed in an imiquimod-treated mouse model. Interferon-γ (IFN-γ), cyclin-dependent kinase (CDK) 1, Toll-like receptor 3 (TLR3), TLR4 and interleukin (IL)-17A were considered as candidate genes. In primary human epidermal keratinocytes, the level of CD274 was obviously increased under the stimulation of IFN-γ and CDK1 inhibitor (indirubin), independent of TLR4, TLR3 or IL-17A. Indirubin alleviated the severity of psoriatic mice in a CD274-dependent manner. Co-expression network analysis served as an effective method for the exploration of molecular mechanisms. We demonstrated for the first time that CD274 was the regulator of indirubin-mediated effect on mouse psoriasis-like skin lesion based on co-expression network analysis, contributing to the alleviation of mouse psoriasis-like skin lesion.


Sign in / Sign up

Export Citation Format

Share Document