scholarly journals Screening Anti-Inflammatory Effects of Flavanones Solutions

2021 ◽  
Vol 22 (16) ◽  
pp. 8878
Author(s):  
Paola Bustos-Salgado ◽  
Berenice Andrade-Carrera ◽  
Valeri Domínguez-Villegas ◽  
Natalia Díaz-Garrido ◽  
María J. Rodríguez-Lagunas ◽  
...  

There are a large number of remedies in traditional medicine focused on relieving pain and inflammation. Flavanones have been a potential source in the search for leading compounds and biologically active components, and they have been the focus of much research and development in recent years. Eysenhardtia platycarpa is used in traditional medicine for the treatment of kidney diseases, bladder infections, and diabetes mellitus. Many compounds have been isolated from this plant, such as flavones, flavanones, phenolic compounds, triterpenoid acids, chalcones, sugars, and fatty acids, among others. In this paper, natural flavanone 1 (extracted from Eysenhardtia platycarpa) as lead compound and flavanones 1a–1d as its structural analogues were screened for anti-inflammatory activity using Molinspiration® and PASS Online in a computational study. The hydro alcoholic solutions (FS) of flavanones 1, 1a–1d (FS1, FS1a–FS1d) were also assayed to investigate their in vivo anti-inflammatory cutaneous effect using two experimental models, a rat ear edema induced by arachidonic acid (AA) and a mouse ear edema induced by 12-O-tetradecanoylphorbol acetate (TPA). Histological studies and analysis of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 were also assessed in AA-inflamed rat ear tissue. The results showed that the flavanone hydro alcoholic solutions (FS) caused edema inhibition in both evaluated models. This study suggests that the evaluated flavanones will be effective when used in the future in skin pathologies with inflammation, with the results showing 1b and 1d to be the best.

Proceedings ◽  
2020 ◽  
Vol 78 (1) ◽  
pp. 23
Author(s):  
Paola Bustos-Salgado ◽  
María J. Rodríguez-Lagunas ◽  
Valeri Domínguez-Villegas ◽  
Berenice Andrade-Carrera ◽  
Ana Calpena-Campmany ◽  
...  

Interest has developed in natural molecules due to their clinically proven effects on skin diseases. Flavanones display several biological activities, and recently have been the focus of studies due to their anti-inflammatory effect. To improve their pharmacological profile, four flavanones (A, B, C, and D) were synthesized by structural modification of one natural flavanone 1 (semi-systematic name: (2S)-5,7-dihydroxy-6-prenylflavanone) extracted from Eysenhardtia platycarpa. The hydroalcoholic flavanone solutions (FS) were assayed to investigate their anti-inflammatory effect on two in vivo cutaneous inflammation models. Materials and methods: the topical anti-inflammatory effects of FS were evaluated against models of 12-O-tetradecanoylphorbol acetate (TPA)-induced mouse ear edema and arachidonic acid (AA) in rat ear edema. Results: The vinylogous cyclized derivative (flavanone D) caused edema inhibition in the TPA-induced models with an inhibition of 96.27 ± 1.93%; equally effective and potent in inhibiting the mouse ear edema as indomethacin had been. In addition, the AA-induced increase in ear thickness was reduced the most by the topical application of modulated ether (flavanone B). Conclusions: The in vivo and histology results suggest that flavanones B and D are effective as topical anti-inflammatory agents in inflammatory processes. Thus, this new compound represents a promising agent for the management of skin diseases with an inflammatory component.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Soudeh Moghadasi ◽  
Marischa Elveny ◽  
Heshu Sulaiman Rahman ◽  
Wanich Suksatan ◽  
Abduladheem Turki Jalil ◽  
...  

AbstractRecently, mesenchymal stem/stromal cells (MSCs) due to their pro-angiogenic, anti-apoptotic, and immunoregulatory competencies along with fewer ethical issues are presented as a rational strategy for regenerative medicine. Current reports have signified that the pleiotropic effects of MSCs are not related to their differentiation potentials, but rather are exerted through the release of soluble paracrine molecules. Being nano-sized, non-toxic, biocompatible, barely immunogenic, and owning targeting capability and organotropism, exosomes are considered nanocarriers for their possible use in diagnosis and therapy. Exosomes convey functional molecules such as long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs), proteins (e.g., chemokine and cytokine), and lipids from MSCs to the target cells. They participate in intercellular interaction procedures and enable the repair of damaged or diseased tissues and organs. Findings have evidenced that exosomes alone are liable for the beneficial influences of MSCs in a myriad of experimental models, suggesting that MSC- exosomes can be utilized to establish a novel cell-free therapeutic strategy for the treatment of varied human disorders, encompassing myocardial infarction (MI), CNS-related disorders, musculoskeletal disorders (e.g. arthritis), kidney diseases, liver diseases, lung diseases, as well as cutaneous wounds. Importantly, compared with MSCs, MSC- exosomes serve more steady entities and reduced safety risks concerning the injection of live cells, such as microvasculature occlusion risk. In the current review, we will discuss the therapeutic potential of MSC- exosomes as an innovative approach in the context of regenerative medicine and highlight the recent knowledge on MSC- exosomes in translational medicine, focusing on in vivo researches.


Author(s):  
Mingzhu Luan ◽  
Huiyun Wang ◽  
Jiazhen Wang ◽  
Xiaofan Zhang ◽  
Fenglan Zhao ◽  
...  

: In vivo and in vitro studies reveal that ursolic acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli, and has favorable anti-inflammatory effects. The anti-inflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of signal pathway, down-regulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 945
Author(s):  
Marika Lanza ◽  
Giovanna Casili ◽  
Giovanna Loredana La Torre ◽  
Daniele Giuffrida ◽  
Archimede Rotondo ◽  
...  

Marine species represent a great source of biologically active substances; Actinia equina (AE), an Anthozoa Cnidaria belonging to the Actinidiae family, have been proposed as original food and have already been included in several cooking recipes in local Mediterranean shores, and endowed with excellent nutraceutical potential. The aim of this study was to investigate some unexplored features of AE, through analytical screening and an in-vitro and in-vivo model. An in-vitro study, made on RAW 264.7 stimulated with H2O2, showed that the pre-treatment with AE exerted an antioxidant action, reducing lipid peroxidation and up-regulating antioxidant enzymes. On the other hand, the in-vivo study over murine model demonstrated that the administration of AE extracts is able to reduce the carrageenan (CAR)-induced paw edema. Furthermore, the histological damage due to the neutrophil infiltration is prevented, and this highlights precious anti-inflammatory features of the interesting food-stuff. Moreover, it was assessed that AE extract modulated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and The nuclear factor erythroid 2–related factor 2 (Nrf-2) pathways. In conclusion, our data demonstrated that thanks to the antioxidant and anti-inflammatory properties, AE extract could be used as a new food supplement for inflammatory pathology prevention.


Author(s):  
Inayat Kabir ◽  
Imtiyaz Ansari

The article emphasizes the anti-inflammatory effects of herbal extracts on different experimental models that are repeatedly used to test the in vivo anti-inflammatory activity of herbal components. Edema, granuloma and arthritis models are used to test the anti-inflammatory activity of plant extracts whereas formalin or acetic acid-induced writhing test and hot plate methods are the most repeatedly used to evaluate anti-nociceptive potentials of the herbal extracts. Although adjuvant-induced and collagen-induced arthritis models are also quite efficient, they have been used seldom to evaluate anti-inflammatory tendencies of the herbs. Here, we suggest a double positive reference model using both steroid and nonsteroidal anti-inflammatory drugs at the same time, instead of using only one of them either.


Cosmetics ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 68
Author(s):  
Young-Ah Jang ◽  
Yong Hur ◽  
Jin-Tae Lee

Sanguisorbae Radix (SR) is the root of the Sanguisorba officinalis L., a plant native to Asian countries and used in traditional medicine. We isolated the active components of SR and investigated their anti-inflammatory potential. Quercetin (QC), (+)-catechin (CC), and gallic acid (GA) were isolated from acetone extracts of SR. To elucidate the molecular mechanism by which these compounds suppress inflammation, we analyzed the transcriptional up-regulation of inflammatory mediators, such as nuclear factor-kappa B (NF-κB) and its target genes, inducible NOS (iNOS), and cyclooxygenase (COX)-2, in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Notably, QC, CC, and GA were found to inhibit the production of nitric oxide, tumor necrosis factor-alpha, and prostaglandin in a dose-dependent manner. Western blot results indicate that the compounds decreased the expression of iNOS and COX-2 proteins. Furthermore, the compounds decreased phosphorylation of IKK, IκB, ERK, p-38, and JNK proteins in LPS-induced cells. The results support the notion that QC, CC, and GA can potently inhibit the inflammatory response, with QC showing the highest anti-inflammatory activity. In in vivo toxicity studies in zebrafish (Danio rerio), QC showed no toxicity up to 25 μg/mL. Therefore, QC has non-toxic potential as a skin anti-inflammatory biomaterial.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Rodolfo Abarca-Vargas ◽  
Vera L. Petricevich

Background. Different pharmacological properties, such as antioxidant, antiproliferative, and anti-inflammatory properties, have been described among natural products. We previously described that the Bougainvillea xbuttiana (Variety Orange) ethanolic extract (BxbO) has an anti-inflammatory effect; however, this action is not fully understood. In this study, the action of the BxbO extract on the secretion of inflammatory mediators in two experimental models, in vitro and in vivo, after LPS challenge was evaluated. Methods. Peritoneal macrophages were obtained from female BALB/c mice and LPS-challenged with or without the BxbO extract. For the evaluation of mediators, the supernatants at 0, 12, 24, 36, and 48 hours were collected. For in vivo estimation, groups of female BALB/c mice were first intraperitoneously injected with different amounts of LPS and later administered the oral BxbO extract (v.o.) for 144 hours. To understand the mechanism of action, sera obtained from mice were collected at 0, 2, 4, 8, 12, and 24 hours after LPS challenge (with or without BxbO) for the detection of mediators. Results. The results showed that, in both peritoneal macrophages and sera of mice treated with the BxbO extract 1 hour before or together with LPS challenge, proinflammatory cytokines and nitric oxide release were unquestionably repressed. In contrast, in both systems studied here, the IL-10 levels were elevated to 5 to 9 times. At lethal doses of LPS, the BxbO extract treatment was found to protect animals from death. Conclusions. The results revealed that the inhibitory, protective, and benign effects of the BxbO extract were due to its capacity to balance the secretion of mediators.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 590 ◽  
Author(s):  
Juliana Agostinho Lopes ◽  
Vinícius Peixoto Rodrigues ◽  
Marcelo Marucci Pereira Tangerina ◽  
Lucia Regina Machado da Rocha ◽  
Catarine Massucato Nishijima ◽  
...  

Machaerium hirtum (Vell.) Stellfeld (Fabaceae) known in Brazil as “jacaranda de espinho” or “espinheira santa nativa” is a medicinal plant commonly used in folk medicine to treat ulcers, cough and diarrhea. This study aimed to investigate the anti-inflammatory and antinociceptive effects of hydroalcoholic extracts from M. hirtum twig (HEMh) using in vivo experimental models of nociception through the involvement of transient receptor potential channels, acid-sensing ion channel (ASIC), nitrergic, opioidergic, glutamatergic, and supraspinal pathways. Our results revealed an antinociceptive effect of HEMh mediated by the opioidergic, l-arginine-nitric oxide and glutamate systems, as well as by interactions with TRPA1/ASIC channels. The anti-inflammatory effect of HEMh evaluated with a xylene-induced ear edema and by the involvement of arachidonic acid and prostaglandin E2 (PGE2) showed involvement of the COX pathway, based on observed decreases in PGE2 levels. A phytochemical investigation of the HEMh led to the isolation of α-amyrin, β-amyrin, allantoin, apigenin-7-methoxy-6-C-β-d-glucopyranoside, and apigenin-6-C-β-d-glucopyranosyl-8-C-β-d-xylopyranoside. In conclusion, the acute oral administration of HEMh inhibits the nociceptive behavioral response in animals through the nitrergic, opioid, glutamatergic pathways, and by inhibition of the TRPA1 and ASIC channels, without causing locomotor dysfunction. In addition, its anti-inflammatory effect is associated with the COX pathway and decreased PGE2 levels.


2016 ◽  
Vol 311 (3) ◽  
pp. L664-L675 ◽  
Author(s):  
Clémence O. Henry ◽  
Emilie Dalloneau ◽  
Maria-Teresa Pérez-Berezo ◽  
Cristina Plata ◽  
Yongzheng Wu ◽  
...  

Cystic fibrosis (CF) is an inherited disease associated with chronic severe lung inflammation, leading to premature death. To develop innovative anti-inflammatory treatments, we need to characterize new cellular and molecular components contributing to the mechanisms of lung inflammation. Here, we focused on the potential role of “transient receptor potential vanilloid-4” (TRPV4), a nonselective calcium channel. We used both in vitro and in vivo approaches to demonstrate that TRPV4 expressed in airway epithelial cells triggers the secretion of major proinflammatory mediators such as chemokines and biologically active lipids, as well as a neutrophil recruitment in lung tissues. We characterized the contribution of cytosolic phospholipase A2, MAPKs, and NF-κB in TRPV4-dependent signaling. We also showed that 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids, i.e., four natural lipid-based TRPV4 agonists, are present in expectorations of CF patients. Also, TRPV4-induced calcium mobilization and inflammatory responses were enhanced in cystic fibrosis transmembrane conductance regulator-deficient cellular and animal models, suggesting that TRPV4 is a promising target for the development of new anti-inflammatory treatments for diseases such as CF.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Fernanda Paula R. Santana ◽  
Nathalia M. Pinheiro ◽  
Márcia Isabel B. Mernak ◽  
Renato F. Righetti ◽  
Mílton A. Martins ◽  
...  

Pulmonary inflammation is a hallmark of many respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory syndrome distress (ARDS). Most of these diseases are treated with anti-inflammatory therapy in order to prevent or to reduce the pulmonary inflammation. Herbal medicine-derived natural products have been used in folk medicine and scientific studies to evaluate the value of these compounds have grown in recent years. Many substances derived from plants have the biological effectsin vitroandin vivo, such as flavonoids, alkaloids, and terpenoids. Among the biological activities of natural products derived from plants can be pointed out the anti-inflammatory, antiviral, antiplatelet, antitumor anti-allergic activities, and antioxidant. Although many reports have evaluated the effects of these compounds in experimental models, studies evaluating clinical trials are scarce in the literature. This review aims to emphasize the effects of these different natural products in pulmonary diseases in experimental models and in humans and pointing out some possible mechanisms of action.


Sign in / Sign up

Export Citation Format

Share Document