scholarly journals Histone Deacetylase 3 Regulates Adipocyte Phenotype at Early Stages of Differentiation

2021 ◽  
Vol 22 (17) ◽  
pp. 9300
Author(s):  
Dalma Cricrí ◽  
Lara Coppi ◽  
Silvia Pedretti ◽  
Nico Mitro ◽  
Donatella Caruso ◽  
...  

Obesity is a condition characterized by uncontrolled expansion of adipose tissue mass resulting in pathological weight gain. Histone deacetylases (HDACs) have emerged as crucial players in epigenetic regulation of adipocyte metabolism. Previously, we demonstrated that selective inhibition of class I HDACs improves white adipocyte functionality and promotes the browning phenotype of murine mesenchymal stem cells (MSCs) C3H/10T1/2 differentiated to adipocytes. These effects were also observed in db/db and diet induced obesity mouse models and in mice with adipose-selective inactivation of HDAC3, a member of class I HDACs. The molecular basis of class I HDACs action in adipose tissue is not deeply characterized and it is not known whether the effects of their inhibition are exerted on adipocyte precursors or mature adipocytes. Therefore, the aim of the present work was to explore the molecular mechanism of class I HDAC action in adipocytes by evaluating the effects of HDAC3-specific silencing at different stages of differentiation. HDAC3 was silenced in C3H/10T1/2 MSCs at different stages of differentiation to adipocytes. shRNA targeting HDAC3 was used to generate the knock-down model. Proper HDAC3 silencing was assessed by measuring both mRNA and protein levels of mouse HDAC3 via qPCR and western blot, respectively. Mitochondrial DNA content and gene expression were quantified via qPCR. HDAC3 silencing at the beginning of differentiation enhanced adipocyte functionality by amplifying the expression of genes regulating differentiation, oxidative metabolism, browning and mitochondrial activity, starting from 72 h after induction of differentiation and silencing. Insulin signaling was enhanced as demonstrated by increased AKT phosphorylation following HDAC3 silencing. Mitochondrial content/density did not change, while the increased expression of the transcriptional co-activator Ppargc1b suggests the observed phenotype was related to enhanced mitochondrial activity, which was confirmed by increased maximal respiration and proton leak linked to reduced coupling efficiency. Moreover, the expression of pro-inflammatory markers increased with HDAC3 early silencing. To the contrary, no differences in terms of gene expression were found when HDAC3 silencing occurred in terminally differentiated adipocyte. Our data demonstrated that early epigenetic events mediated by class I HDAC inhibition/silencing are crucial to commit adipocyte precursors towards the above-mentioned metabolic phenotype. Moreover, our data suggest that these effects are exerted on adipocyte precursors.

2020 ◽  
Author(s):  
David Izquierdo-Garcia ◽  
Jacob M. Hooker ◽  
Frederick A. Schroeder ◽  
Choukri Mekkaoui ◽  
Tonya M. Gilbert ◽  
...  

AbstractRationaleHistone deacetylases (HDACs) play a central role in cardiac hypertrophy and fibrosis in preclinical models. However, their impact in the human heart remains unknown.ObjectiveWe aimed to image HDAC expression in the human heart in vivo with PET-MR (positron emission tomography and magnetic resonance) using [11C]Martinostat, a novel radiotracer targeted to class I HDACs. We further aimed to compare HDAC expression in the heart with its expression in skeletal muscle and brown/white adipose tissue (BAT/WAT).Methods and ResultsThe specificity and selectivity of [11C]Martinostat binding in the heart was assessed in non-human primates (n=2) by in vivo blocking studies and with an ex vivo cellular thermal shift assay (CETSA) of HDAC paralog stabilization by Martinostat. PET-MR imaging of [11C]Martinostat was performed in healthy volunteers (n=6) for 60 minutes to obtain time-activity curves of probe uptake and kinetics. qPCR of class I HDACs was performed in specimens of BAT obtained from patients (n=7) undergoing abdominal surgery and in specimens of human subcutaneous WAT (n=7). CETSA and the blocking studies demonstrated that Martinostat was specific for class I HDACs in the heart. HDAC density, measured by standardized uptake values of [11C]Martinostat, was 8 times higher in the myocardium than skeletal muscle (4.4 ± 0.6 vs. 0.54 ± 0.29, p<0.05) and also significantly higher in BAT than WAT (0.96 ± 0.29 vs. 0.17 ± 0.08, p<0.05). qPCR confirmed higher class I HDAC expression in BAT, particularly HDAC2 and HDAC3 (2.6 and 2.7-fold higher than WAT respectively, p<0.01).ConclusionsClass I HDAC expression in the human heart can be imaged in vivo and is dramatically higher than any other peripheral tissue, including skeletal muscle. The high levels of HDAC in the myocardium and BAT suggest that epigenetic regulation plays an important role in tissues with high energetic demands and metabolic plasticity.


2004 ◽  
Vol 24 (8) ◽  
pp. 3132-3139 ◽  
Author(s):  
Liqiang Tou ◽  
Qiang Liu ◽  
Ramesh A. Shivdasani

ABSTRACT The biochemical mechanisms underlying epigenetic control of gene expression are increasingly well known. In contrast, the contributions of individual modifications toward activation of lineage-specific genes during vertebrate development are poorly understood. Class II histone deacetylases (HDACs), which show restricted tissue distribution, regulate muscle-specific gene expression, in part through interactions with myogenic transcription factors. We have combined gene expression profiling with manipulation of fetal mouse intestinal tissue to define roles for other regulatory factors. We found that in the developing mouse intestine class I HDACs are confined to the prospective epithelium and that their levels decline coincidently with activation of differentiation genes, suggesting a functional relationship between these events. Overexpression of wild-type but not of mutant HDACs 1 and 2 in fetal intestine explants reverses expression of certain maturation markers. HDAC inhibitors, including the selective class I antagonist valproic acid, activate the same genes prematurely and accelerate cytodifferentiation. Chromatin immunoprecipitation of freshly isolated organs reveals early HDAC2 occupancy at differentiation gene promoters and corresponding histone hypoacetylation that reverses as HDAC levels fall. Thus, modulation of endogenous class I HDAC levels represents a previously unappreciated mechanism to enable onset of tissue-restricted gene expression in a developing mammalian organ.


Cell Reports ◽  
2020 ◽  
Vol 33 (1) ◽  
pp. 108228 ◽  
Author(s):  
John M. Dean ◽  
Anyuan He ◽  
Min Tan ◽  
Jun Wang ◽  
Dongliang Lu ◽  
...  

2004 ◽  
Vol 78 (13) ◽  
pp. 6744-6757 ◽  
Author(s):  
Patrick Lomonte ◽  
Joëlle Thomas ◽  
Pascale Texier ◽  
Cécile Caron ◽  
Saadi Khochbin ◽  
...  

ABSTRACT This study describes the physical and functional interactions between ICP0 of herpes simplex virus type 1 and class II histone deacetylases (HDACs) 4, 5, and 7. Class II HDACs are mainly known for their participation in the control of cell differentiation through the regulation of the activity of the transcription factor MEF2 (myocyte enhancer factor 2), implicated in muscle development and neuronal survival. Immunofluorescence experiments performed on transfected cells showed that ICP0 colocalizes with and reorganizes the nuclear distribution of ectopically expressed class I and II HDACs. In addition, endogenous HDAC4 and at least one of its binding partners, the corepressor protein SMRT (for silencing mediator of retinoid and thyroid receptor), undergo changes in their nuclear distribution in ICP0-transfected cells. As a result, during infection endogenous HDAC4 colocalizes with ICP0. Coimmunoprecipitation and glutathione S-transferase pull-down assays confirmed that class II but not class I HDACs specifically interacted with ICP0 through their amino-terminal regions. This region, which is not conserved in class I HDACs but homologous to the MITR (MEF2-interacting transcription repressor) protein, is responsible for the repression, in a deacetylase-independent manner, of MEF2 by sequestering it under an inactive form in the nucleus. Consequently, we show that ICP0 is able to overcome the HDAC5 amino-terminal- and MITR-induced MEF2A repression in gene reporter assays. This is the first report of a viral protein interacting with and controlling the repressor activity of class II HDACs. We discuss the putative consequences of such an interaction for the biology of the virus both during lytic infection and reactivation from latency.


Diabetes ◽  
2012 ◽  
Vol 62 (3) ◽  
pp. 732-742 ◽  
Author(s):  
A. Galmozzi ◽  
N. Mitro ◽  
A. Ferrari ◽  
E. Gers ◽  
F. Gilardi ◽  
...  

2011 ◽  
Vol 164 ◽  
pp. S7 ◽  
Author(s):  
Alessandra Ferrari ◽  
Andrea Galmozzi ◽  
Nico Mitro ◽  
Elise Gers ◽  
Federica Gilardi ◽  
...  

2008 ◽  
Vol 197 (1) ◽  
pp. 111-119 ◽  
Author(s):  
A I Martín ◽  
E Castillero ◽  
M Granado ◽  
M López-Menduiña ◽  
M A Villanúa ◽  
...  

Adjuvant-induced arthritis is a model of rheumatoid arthritis that induces cachexia. In other cachectic situations, there is an increase in lipolysis resulting in a loss of adipose tissue mass. The aim of this work was to analyse the effect of chronic arthritis, induced by adjuvant injection, on white adipose tissue (WAT). For this purpose, rats were killed 10 days after adjuvant injection, when the first external symptoms appeared, on days 15 and 22 when the external signs of the illness reach their severest level. As arthritis decreases food intake, a pair-fed group was also included. Serum concentrations of insulin, leptin, adiponectin, glycerol and nitrites, as well as gene expression of leptin, adiponectin, hormone-sensitive lipase (HSL), fatty acid synthase (FAS), tumour necrosis factor α and zinc-α2-glycoprotein (ZAG) were determined. Arthritis decreased food intake between days 5 and 16, but not during the last 5 days of the experiment. There was a marked decrease in relative adipose tissue weight and in serum leptin and adiponectin as well as in their gene expression in WAT in arthritic rats. Arthritis decreased the gene expression of FAS in the WAT. However, none of these effects was found in pair-fed rats. Arthritis did not increase lipolysis, since arthritic rats have lower serum concentrations of glycerol, HSL mRNA in WAT, as well as liver ZAG mRNA than the pair-fed or control rats. These data suggest that in chronic arthritis the decrease in white adipose mass is secondary to a reduced adipose lipogenesis, and this effect is not mainly due to the decrease in food intake.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Harinath Kasiganesan ◽  
Ludivine Renaud ◽  
Santhosh K Mani ◽  
Chou C James ◽  
Rupak Mukherjee ◽  
...  

Protection from coronary heart disease-induced damage of the myocardium during myocardial infarction (MI) injury has been a target of investigation for the development of innovative cardioprotective therapies. Histone deacetylases (HDACs) are a class of enzymes that affect the transcriptional regulation of genes during pathological conditions. We observed that class I/IIb HDAC activity was nearly 5 times greater in the 7-day post-MI LV when compared to the sham ventricles. In vitro inhibition studies indicated that the majority of increased activity was due to class I HDACs. Therefore we hypothesized that suppression of class I HDACs would prevent the pathophysiological changes occurring during MI, thus improving LV pump function in post-MI myocardium. CD-1 mice were administered with the a class I HDAC inhibitor pimelic diphenylamide (PD106) or vehicle immediately after induction of MI and the treatment continued every other day for 7 days post MI. LV end-diastolic volumes, expressed as change from pre-MI values, was significantly lower in the PD106 treated mice compared to vehicle treated mice. Further, the post-MI reduction in LV ejection faction was significantly attenuated in the PD106-treated mice compared to the MI alone group. Similarly, echo cardiac strain analysis showed improved LV strain and better coherence in contractile function among infarct and border zones in PD106 MI group compared to MI only. These unique findings demonstrate that class I HDAC inhibitors may provide a novel therapeutic means to attenuate adverse post-MI LV remodeling.


2015 ◽  
Vol 27 (8) ◽  
pp. 1205 ◽  
Author(s):  
Shalini Ojha ◽  
Michael E. Symonds ◽  
Helen Budge

Manipulation of the maternal diet at defined stages of gestation influences long-term health by inducing changes in fetal adipose tissue development, characterised as possessing brown and white adipocytes. We determined whether suboptimal maternal nutrition in early-to-mid gestation, followed by ad libitum feeding until term, increases adiposity in the pericardial depot of the sheep fetus. Pericardial adipose tissue was sampled from near-term (140 days) fetuses delivered to mothers fed either 100% (C) or 60% (i.e. nutrient restricted (NR)) of their total metabolisable requirements from 28 to 80 days gestation and then fed ad libitum. Adipose tissue mass, uncoupling protein (UCP) 1 and gene expression of brown and white adipogenic genes was measured. Total visceral and pericardial adiposity was increased in offspring born to NR mothers. The abundance of UCP1 was increased, together with those genes involved in brown (e.g. BMP7 and C/EBPβ) and white (e.g. BMP4 and C/EBPα) adipogenesis, whereas insulin receptor gene expression was downregulated. In conclusion, suboptimal maternal nutrition between early-to-mid gestation followed by ad libitum feeding enhances pericardial adiposity near to term. A combination of raised UCP1 and adipose tissue mass could improve survival following cold exposure at birth. In the longer term, this enhanced adipogenic potential could predispose to greater pericardial adiposity.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Ludivine Renaud ◽  
Harinath Kasiganesan ◽  
Erhe Gao ◽  
Santhosh K Mani ◽  
Jeffrey A Jones ◽  
...  

Cardiovascular diseases are one of the leading causes of morbidity and mortality in the world, underlining the need for innovative therapies and diagnosis. Recent reports have identified microRNAs (miRNAs) as central players in regulating gene expression and showed that several miRNAs are aberrantly expressed in cardiac arrhythmia, hypertrophy, fibrosis, ischemia, vascular atherosclerosis and heart failure. Gene expression is also regulated at the transcriptional level by histone deacetylases (HDACs) under basal and pathological conditions. We previously demonstrated that 1) class I and class II HDACs play an important role in the basal expression and upregulation of the sodium-calcium exchanger (Ncx1) gene in adult cardiomyocytes and pressure-overloaded ventricle and 2) treatment with class I/IIb HDAC inhibitors trichostatin (TSA) or suberoylanilide hydroxamic acid (SAHA) improved ventricular function by suppressing matrix metalloproteinases (MMPs) gene expression in myocardial infarction (MI).Therefore it is possible that protein acetylation regulates the expression of some miRNAs and we hypothesize that HDAC inhibition would attenuate the shift in expression of certain miRNAs that are aberrantly expressed post-MI. In a pilot study, ligation of the left anterior descending (LAD) coronary artery was performed to induce MI with and without SAHA treatment. Because of its misregulation and relevance in cardiac hypertrophy and MI, we examined the expression level of miR-21. qRT-PCR confirmed that miR-21 is increased by 8 fold 7 days post-MI. Interestingly, SAHA treatment significantly attenuated the abnormal expression of miR-21. To our knowledge, it is the first report of the regulation of a miRNA by HDACs in the heart. We anticipate that not only miR-21 but other miRNAs will fall under the same mechanistic control via acetylation. The miR-21 promoter contains binding sites for several transcription factors that get acetylated and we speculate that one or more HDAC mediate the expression of miR-21 by controlling the acetylation state of transcription factors interacting with the miR-21 promoter.


Sign in / Sign up

Export Citation Format

Share Document