scholarly journals Growth Factors, Reactive Oxygen Species, and Metformin—Promoters of the Wound Healing Process in Burns?

2021 ◽  
Vol 22 (17) ◽  
pp. 9512
Author(s):  
Daniela Miricescu ◽  
Silviu Constantin Badoiu ◽  
Iulia-Ioana Stanescu-Spinu ◽  
Alexandra Ripszky Totan ◽  
Constantin Stefani ◽  
...  

Burns can be caused by various factors and have an increased risk of infection that can seriously delay the wound healing process. Chronic wounds caused by burns represent a major health problem. Wound healing is a complex process, orchestrated by cytokines, growth factors, prostaglandins, free radicals, clotting factors, and nitric oxide. Growth factors released during this process are involved in cell growth, proliferation, migration, and differentiation. Reactive oxygen species are released in acute and chronic burn injuries and play key roles in healing and regeneration. The main aim of this review is to present the roles of growth factors, reactive oxygen species, and metformin in the healing process of burn injuries.

2018 ◽  
Vol 5 (2) ◽  
pp. 22
Author(s):  
Handy Arief ◽  
M Aris Widodo

Wound healing is a complex dynamic process characterized by a series of events that occur in almost all type of tissue damage. In the early phase of the inflammatory response, neutrophils and macrophages enters into the injured tissue and the cells produce reactive oxygen species that can give a beneficial or detrimental effects. Oxidative stress is a condition occurs that shows imbalance between prooxidant or free radical and antioxidant that have a function to maintain the condition of the tissue damage that occurs. So Oxidative stress occurs when the production of Reactive Oxygen Species occurring is higher than the antioxidants existing as an intrinsic defense. Reactive Oxygen Species and Reactive Nitrogen Species are important components in the healing process of wounds and is necessary to be in the state of homeostasis to prevent oksidatif stress. The major components of ROS are superoxide (O2•), hydroxyl radical (OH•) and hydrogen peroxide (H2O2), which includes RNS are nitric oxide (NO•), nitrous oxide (NO2•), nitroxyl anion (HNO) and peroxynitrite (ONOO-) which could be form by the reaction between superoxide and nitric oxide. The existence of excessive O2 amount in the wound and the presence of excess NO can increase the incidence of oxidative stress that interfere with wound healing process. Oxidative stress plays a role in the inflammatory phase, proliferation and remodeling phase by increasing angiogenesis and affect other cells including endothelial cells in secreting NO. So the strategy in controlling oxidative stress is by increasing antioxidant level which is a scavenger to free radical excessive superoxide formation so preventing interference with the wound healing process. 


2015 ◽  
Vol 14 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Christopher Dunnill ◽  
Thomas Patton ◽  
James Brennan ◽  
John Barrett ◽  
Matthew Dryden ◽  
...  

Author(s):  
Inés María Comino-Sanz ◽  
María Dolores López-Franco ◽  
Begoña Castro ◽  
Pedro Luis Pancorbo-Hidalgo

(1) Background: Reactive oxygen species (ROS) play a crucial role in the preparation of the normal wound healing response. Therefore, a correct balance between low or high levels of ROS is essential. Antioxidant dressings that regulate this balance is a target for new therapies. The purpose of this review is to identify the compounds with antioxidant properties that have been tested for wound healing and to summarize the available evidence on their effects. (2) Methods: A literature search was conducted and included any study that evaluated the effects or mechanisms of antioxidants in the healing process (in vitro, animal models, or human studies). (3) Results: Seven compounds with antioxidant activity were identified (Curcumin, N-acetyl cysteine, Chitosan, Gallic Acid, Edaravone, Crocin, Safranal, and Quercetin) and 46 studies reporting the effects on the healing process of these antioxidants compounds were included. (4) Conclusions: These results highlight that numerous novel investigations are being conducted to develop more efficient systems for wound healing activity. The application of antioxidants is useful against oxidative damage and accelerates wound healing. Designing biomaterials that can scavenge excess reactive oxygen species requires new technologies and further research, especially human studies.


2020 ◽  
Vol 26 (36) ◽  
pp. 4551-4568
Author(s):  
Mohammad Kashif Iqubal ◽  
Sadaf Saleem ◽  
Ashif Iqubal ◽  
Aiswarya Chaudhuri ◽  
Faheem Hyder Pottoo ◽  
...  

A wound refers to the epithelial loss, accompanied by loss of muscle fibers collagen, nerves and bone instigated by surgery, trauma, frictions or by heat. Process of wound healing is a compounded activity of recovering the functional integrity of the damaged tissues. This process is mediated by various cytokines and growth factors usually liberated at the wound site. A plethora of herbal and synthetic drugs, as well as photodynamic therapy, is available to facilitate the process of wound healing. Generally, the systems used for the management of wounds tend to act through covering the ruptured site, reduce pain, inflammation, and prevent the invasion and growth of microorganisms. The available systems are, though, enough to meet these requirements, but the involvement of nanotechnology can ameliorate the performance of these protective coverings. In recent years, nano-based formulations have gained immense popularity among researchers for the wound healing process due to the enhanced benefits they offer over the conventional preparations. Hereupon, this review aims to cover the entire roadmap of wound healing, beginning from the molecular factors involved in the process, the various synthetic and herbal agents, and combination therapy available for the treatment and the current nano-based systems available for delivery through the topical route for wound healing.


2021 ◽  
Vol 124 ◽  
pp. 219-232 ◽  
Author(s):  
Hao Cheng ◽  
Zhe Shi ◽  
Kan Yue ◽  
Xusheng Huang ◽  
Yichuan Xu ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1546
Author(s):  
Zhen Li ◽  
Shunqi Mei ◽  
Yajie Dong ◽  
Fenghua She ◽  
Puwang Li ◽  
...  

Core-shell nanofibers have great potential for bio-medical applications such as wound healing dressings where multiple drugs and growth factors are expected to be delivered at different healing phases. Compared to monoaxial nanofibers, core-shell nanofibers can control the drug release profile easier, providing sustainable and effective drugs and growth factors for wound healing. However, it is challenging to produce core-shell structured nanofibers with a high production rate at low energy consumption. Co-axial centrifugal spinning is an alternative method to address the above limitations to produce core-shell nanofibers effectively. In this study, a co-axial centrifugal spinning device was designed and assembled to produce core-shell nanofibers for controlling the release rate of ibuprofen and hEGF in inflammation and proliferation phases during the wound healing process. Core-shell structured nanofibers were confirmed by TEM. This work demonstrated that the co-axial centrifugal spinning is a high productivity process that can produce materials with a 3D environment mimicking natural tissue scaffold, and the specific drug can be loaded into different layers to control the drug release rate to improve the drug efficiency and promote wound healing.


2014 ◽  
Vol 320 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Nina Tandon ◽  
Elisa Cimetta ◽  
Aranzazu Villasante ◽  
Nicolette Kupferstein ◽  
Michael D. Southall ◽  
...  

Nanoscale ◽  
2022 ◽  
Author(s):  
Liming Peng ◽  
Xuyang Yang ◽  
Song Wang ◽  
Joseph Yau Kei Chan ◽  
Yong Chen ◽  
...  

Antibacterial chemodynamic therapy (aCDT) has captured considerable attention in the treatment of pathogen-induced infection due to its potential to inactivate bacteria through germicidal reactive oxygen species (ROS). However, the lifespan...


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3401
Author(s):  
David Meléndez-Martínez ◽  
Luis Fernando Plenge-Tellechea ◽  
Ana Gatica-Colima ◽  
Martha Sandra Cruz-Pérez ◽  
José Manuel Aguilar-Yáñez ◽  
...  

Chronic wounds are a major health problem that cause millions of dollars in expenses every year. Among all the treatments used, active wound treatments such as enzymatic treatments represent a cheaper and specific option with a fast growth category in the market. In particular, bacterial and plant proteases have been employed due to their homology to human proteases, which drive the normal wound healing process. However, the use of these proteases has demonstrated results with low reproducibility. Therefore, alternative sources of proteases such as snake venom have been proposed. Here, we performed a functional mining of proteases from rattlesnakes (Crotalus ornatus, C. molossus nigrescens, C. scutulatus, and C. atrox) due to their high protease predominance and similarity to native proteases. To characterize Crotalus spp. Proteases, we performed different protease assays to measure and confirm the presence of metalloproteases and serine proteases, such as the universal protease assay and zymography, using several substrates such as gelatin, casein, hemoglobin, L-TAME, fibrinogen, and fibrin. We found that all our venom extracts degraded casein, gelatin, L-TAME, fibrinogen, and fibrin, but not hemoglobin. Crotalus ornatus and C. m. nigrescens extracts were the most proteolytic venoms among the samples. Particularly, C. ornatus predominantly possessed low molecular weight proteases (P-I metalloproteases). Our results demonstrated the presence of metalloproteases capable of degrading gelatin (a collagen derivative) and fibrin clots, whereas serine proteases were capable of degrading fibrinogen-generating fibrin clots, mimicking thrombin activity. Moreover, we demonstrated that Crotalus spp. are a valuable source of proteases that can aid chronic wound-healing treatments.


Sign in / Sign up

Export Citation Format

Share Document