scholarly journals The Role of Macrophages in Staphylococcus aureus Infection

2021 ◽  
Vol 11 ◽  
Author(s):  
Grace R. Pidwill ◽  
Josie F. Gibson ◽  
Joby Cole ◽  
Stephen A. Renshaw ◽  
Simon J. Foster

Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.

2021 ◽  
Vol 12 ◽  
Author(s):  
Alecia M. Blaszczak ◽  
Anahita Jalilvand ◽  
Willa A. Hsueh

The role of adipose tissue (AT) inflammation in obesity and its multiple related-complications is a rapidly expanding area of scientific interest. Within the last 30 years, the role of the adipocyte as an endocrine and immunologic cell has been progressively established. Like the macrophage, the adipocyte is capable of linking the innate and adaptive immune system through the secretion of adipokines and cytokines; exosome release of lipids, hormones, and microRNAs; and contact interaction with other immune cells. Key innate immune cells in AT include adipocytes, macrophages, neutrophils, and innate lymphoid cells type 2 (ILC2s). The role of the innate immune system in promoting adipose tissue inflammation in obesity will be highlighted in this review. T cells and B cells also play important roles in contributing to AT inflammation and are discussed in this series in the chapter on adaptive immunity.


2021 ◽  
Vol 22 (17) ◽  
pp. 9535
Author(s):  
Yuhuai Xie ◽  
Yuanyuan Wei

Long non-coding RNAs (lncRNAs) represent crucial transcriptional and post-transcriptional gene regulators during antimicrobial responses in the host innate immune system. Studies have shown that lncRNAs are expressed in a highly tissue- and cell-specific- manner and are involved in the differentiation and function of innate immune cells, as well as inflammatory and antiviral processes, through versatile molecular mechanisms. These lncRNAs function via the interactions with DNA, RNA, or protein in either cis or trans pattern, relying on their specific sequences or their transcriptions and processing. The dysregulation of lncRNA function is associated with various human non-infectious diseases, such as inflammatory bowel disease, cardiovascular diseases, and diabetes mellitus. Here, we provide an overview of the regulation and mechanisms of lncRNA function in the development and differentiation of innate immune cells, and during the activation or repression of innate immune responses. These elucidations might be beneficial for the development of therapeutic strategies targeting inflammatory and innate immune-mediated diseases.


2021 ◽  
Vol 218 (6) ◽  
Author(s):  
Valbona Mirakaj

Innate immune cells are crucial in the development and regulation of cardiovascular disease. In this issue, two groups, Davis et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20201839) and Li et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20210008) describe the impact of the innate immune system on the development of cardiovascular disease.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2226
Author(s):  
Israa Shihab ◽  
Bariaa A. Khalil ◽  
Noha Mousaad Elemam ◽  
Ibrahim Y. Hachim ◽  
Mahmood Yaseen Hachim ◽  
...  

The innate immune system is the first line of defense against invading pathogens and has a major role in clearing transformed cells, besides its essential role in activating the adaptive immune system. Macrophages, dendritic cells, NK cells, and granulocytes are part of the innate immune system that accumulate in the tumor microenvironment such as breast cancer. These cells induce inflammation in situ by secreting cytokines and chemokines that promote tumor growth and progression, in addition to orchestrating the activities of other immune cells. In breast cancer microenvironment, innate immune cells are skewed towards immunosuppression that may lead to tumor evasion. However, the mechanisms by which immune cells could interact with breast cancer cells are complex and not fully understood. Therefore, the importance of the mammary tumor microenvironment in the development, growth, and progression of cancer is widely recognized. With the advances of using bioinformatics and analyzing data from gene banks, several genes involved in NK cells of breast cancer individuals have been identified. In this review, we discuss the activities of certain genes involved in the cross-talk among NK cells and breast cancer. Consequently, altering tumor immune microenvironment can make breast tumors more responsive to immunotherapy.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Fangming Xiu ◽  
Mile Stanojcic ◽  
Li Diao ◽  
Marc G. Jeschke

Hyperglycemia (HG) and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.


2012 ◽  
Vol 75 (14) ◽  
pp. 4536-4544 ◽  
Author(s):  
Roxane L. Degroote ◽  
Stefanie M. Hauck ◽  
Elisabeth Kremmer ◽  
Barbara Amann ◽  
Marius Ueffing ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5621
Author(s):  
Noah M. Chernosky ◽  
Ilaria Tamagno

Metastatic spread and recurrence are intimately linked to therapy failure, which remains an overarching clinical challenge for patients with cancer. Cancer cells often disseminate early in the disease process and can remain dormant for years or decades before re-emerging as metastatic disease, often after successful treatment. The interactions of dormant cancer cells and their metastatic niche, comprised of various stromal and immune cells, can determine the length of time that cancer cells remain dormant, as well as when they reactivate. New studies are defining how innate immune cells in the primary tumor may be corrupted to help facilitate many aspects of dissemination and re-emergence from a dormant state. Although the scientific literature has partially shed light on the drivers of immune escape in cancer, the specific mechanisms regulating metastasis and dormancy in the context of anti-tumor immunity are still mostly unknown. This review follows the journey of metastatic cells from dissemination to dormancy and the onset of metastatic outgrowth and recurrent tumor development, with emphasis on the role of the innate immune system. To this end, further research identifying how immune cells interact with cancer cells at each step of cancer progression will pave the way for new therapies that target the reactivation of dormant cancer cells into recurrent, metastatic cancers.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 925-925
Author(s):  
Nils H. Thoennissen ◽  
Pierre Kyme ◽  
Ching Wen Tseng ◽  
Gabriela B. Iwanski ◽  
Kenichi Shimada ◽  
...  

Abstract Abstract 925 Staphylococcus aureus in community and healthcare settings commonly causes serious and potentially life-threatening infections. Widespread use of antibiotics is responsible for the emergence and rapid spread of resistant pathogens, including methicillin-resistant S. aureus (MRSA), and highlights a pressing need for development of novel antimicrobial therapies. The myeloid-specific transcription factor, CCAAT/enhancer binding protein epsilon (C/EBPε) serves as a critical regulator of the terminal differentiation and functional maturation of neutrophils and macrophages, both crucial components of the innate immune system. Comparable to humans with neutrophil specific granule deficiency (SGD) carrying a causative mutation in this transcription factor, we showed that C/EBPε-deficient (C/EBPε—/—) mice were severely affected by in vivo infection with S. aureus. Paradoxically, depletion of the defective neutrophils attenuated disease pathology and even improved the outcome of infection. During subcutaneous infection with S. aureus, C/EBPε—/— mice treated with mouse anti-polymorphonuclear neutrophil antibody showed significantly smaller skin lesions, fewer CFU within the lesion, and reduced systemic spread of bacteria. In addition, whole blood from C/EBPε—/— mice was less effective at killing S. aureus compared to their cell-free plasma. Therefore, ineffective clearance of S. aureus by C/EBPε—/— neutrophils, even compared to extracellular killing mechanisms, likely permitted S. aureus to thrive within neutrophils, which further aggravated the infection. Because C/EBPε plays a critical role in the host immune response against S. aureus infection, we further hypothesized that increased activity of C/EBPε could enhance immune killing of bacteria. Using a zink-inducible expression vector, we induced overexpression of C/EBPε in U937-macrophages, and thereby enhanced bacterial clearance including MRSA by up to 1.5 log10 CFU/mL. Interestingly, we found that the epigenetic modulator, nicotinamide (NAM; vitamin B3), increased activity of C/EBPε as well as downstream antimicrobial targets. Upon exposing bone-marrow derived macrophages or mononuclear cells from wildtype mice to NAM (1 or 10 mM), increased levels of lysine acetylation on core histone H3 were detected at the promoter region of CEBPE. This was associated with elevated mRNA and protein levels of C/EBPε, and increased expression of downstream antimicrobials such as cathelicidin(-related) antimicrobial peptide (CAMP) and Lactoferrin. In an in vitro, as well as in vivo infection model, moderately concentrated NAM enhanced killing of S. aureus by up to 3 log10, but had no effect when administered to C/EBPε-deficient mice. This again points to C/EBPε as an important target to boost killing of bacteria by the innate immune system. Strikingly, and consistent with our murine data, NAM treatment reduced the ability of S. aureus to survive in whole human blood obtained from 12 healthy humans by 2–3 log10. In line with our findings on S. aureus, we were able to demonstrate similar immune boosting effects of NAM in human blood infected with other important human pathogens such as K. pneumoniae and P. aeruginosa. In an age when the number of antibiotics in the pipeline is limited and development of resistance occurs rapidly, use of complementary strategies to antibiotic treatment provides a promising method of limiting development of antibiotic resistance. Here, we demonstrated that C/EBPε is a regulatory factor that critically impacts the host's ability to fight bacterial infections. Compounds exerting modulatory effects on this myeloid-specific transcription factor may emerge as important antimicrobial therapeutics against frequent pathogens such as S. aureus. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 7 (12) ◽  
pp. 625 ◽  
Author(s):  
Amanda Carroll-Portillo ◽  
Henry C. Lin

Bacteriophage and the bacteria they infect are the dominant members of the gastrointestinal microbiome. While bacteria are known to be central to maintenance of the structure, function, and health of the microbiome, it has only recently been recognized that phage too might serve a critical function. Along these lines, bacteria are not the only cells that are influenced by bacteriophage, and there is growing evidence of bacteriophage effects on epithelial, endothelial, and immune cells. The innate immune system is essential to protecting the Eukaryotic host from invading microorganisms, and bacteriophage have been demonstrated to interact with innate immune cells regularly. Here, we conduct a systematic review of the varying mechanisms allowing bacteriophage to access and interact with cells of the innate immune system and propose the potential importance of these interactions.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1512
Author(s):  
Adil Ijaz ◽  
Edwin J. A. Veldhuizen ◽  
Femke Broere ◽  
Victor P. M. G. Rutten ◽  
Christine A. Jansen

Salmonellosis is a common infection in poultry, which results in huge economic losses in the poultry industry. At the same time, Salmonella infections are a threat to public health, since contaminated poultry products can lead to zoonotic infections. Antibiotics as feed additives have proven to be an effective prophylactic option to control Salmonella infections, but due to resistance issues in humans and animals, the use of antimicrobials in food animals has been banned in Europe. Hence, there is an urgent need to look for alternative strategies that can protect poultry against Salmonella infections. One such alternative could be to strengthen the innate immune system in young chickens in order to prevent early life infections. This can be achieved by administration of immune modulating molecules that target innate immune cells, for example via feed, or by in-ovo applications. We aimed to review the innate immune system in the chicken intestine; the main site of Salmonella entrance, and its responsiveness to Salmonella infection. Identifying the most important players in the innate immune response in the intestine is a first step in designing targeted approaches for immune modulation.


Sign in / Sign up

Export Citation Format

Share Document