scholarly journals Postharvest Treatment of Hydrogen Sulfide Delays the Softening of Chilean Strawberry Fruit by Downregulating the Expression of Key Genes Involved in Pectin Catabolism

2021 ◽  
Vol 22 (18) ◽  
pp. 10008
Author(s):  
Sebastian A. Molinett ◽  
Juan F. Alfaro ◽  
Felipe A. Sáez ◽  
Sebastian Elgueta ◽  
María A. Moya-León ◽  
...  

Hydrogen sulfide (H2S) plays several physiological roles in plants. Despite the evidence, the role of H2S on cell wall disassembly and its implications on fleshy fruit firmness remains unknown. In this work, the effect of H2S treatment on the shelf-life, cell wall polymers and cell wall modifying-related gene expression of Chilean strawberry (Fragaria chiloensis) fruit was tested during postharvest storage. The treatment with H2S prolonged the shelf-life of fruit by an effect of optimal dose. Fruit treated with 0.2 mM H2S maintained significantly higher fruit firmness than non-treated fruit, reducing its decay and tripling its shelf-life. Additionally, H2S treatment delays pectin degradation throughout the storage period and significantly downregulated the expression of genes encoding for pectinases, such as polygalacturonase, pectate lyase, and expansin. This evidence suggests that H2S as a gasotransmitter prolongs the post-harvest shelf-life of the fruit and prevents its fast softening rate by a downregulation of the expression of key pectinase genes, which leads to a decreased pectin degradation.

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1649
Author(s):  
Hyang-Lan Eum ◽  
Seung-Hyun Han ◽  
Eun-Jin Lee

Improved methods are needed to extend the shelf life of strawberry fruits. The objective of this study was to determine the postharvest physiological mechanism of high-CO2 treatment in strawberries. Harvested strawberries were stored at 10 °C after 3 h of exposure to a treatment with 30% CO2 or air. Pectin and gene expression levels related to cell wall degradation were measured to assess the high-CO2 effects on the cell wall and lipid metabolism. Strawberries subjected to high-CO2 treatment presented higher pectin content and firmness and lower decay than those of control fruits. Genes encoding cell wall-degrading enzymes (pectin methylesterase, polygalacturonase, and pectate lyase) were downregulated after high-CO2 treatment. High-CO2 induced the expression of oligogalacturonides, thereby conferring defense against Botrytis cinerea in strawberry fruits, and lowering the decay incidence at seven days after its inoculation. Our findings suggest that high-CO2 treatment can maintain strawberry quality by reducing decay and cell wall degradation.


2018 ◽  
Vol 21 (0) ◽  
Author(s):  
Samira Haddad Spiller ◽  
Tamara Rezende Marques ◽  
Anderson Assaid Simão ◽  
Mariana Aparecida Braga ◽  
Lucimara Nazaré Silva Botelho ◽  
...  

Abstract Guava is a highly perishable fruit due to its intense metabolism during ripening, with a shelf life of up to five days at room temperature. The loss of firmness during ripening is caused by the activity of hydrolytic enzymes that promote dissolution of the pectin constituents of the cell wall. Although guava is considered to be rich in pectin, the amounts reported in the literature do not exceed 2.4%, a content indicating it is not responsible for the firmness of guava. The aim of this study was to extract pectin from the guava pulp during 7 days of ripening by two methods (ethanol and EDTA extraction) and suggest modifications in the methods by adding to the extraction residue, cellulase and pectinase to degrade the cell wall structure of the fruit and obtain larger amounts of pectin, which would imply the participation of pectin in the maintenance of fruit firmness. It was possible to infer there were no differences in the pectin levels extracted by the two methods, due to sugar contamination. As from the new stage in the execution by the two methods, the extraction was more efficient: 9.10% of pectin with EDTA and 7.63% with ethanol. The pectin contents found were higher than those mentioned in the literature, better explaining their responsibility in fruit firmness.


2017 ◽  
Vol 15 (12) ◽  
pp. 1544-1555 ◽  
Author(s):  
Lu Yang ◽  
Wei Huang ◽  
Fangjie Xiong ◽  
Zhiqiang Xian ◽  
Deding Su ◽  
...  

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 511D-511
Author(s):  
Alan B. Bennett

Fruit softening is integral to the ripening process. It is an important component of fruit quality, but also initiates deterioration and is a limiting determinant of shelf-life. Intensive research has attempted to elucidate the biochemical and genetic control of fruit softening with the goal of controlling this process as a means to enhance both fruit quality and shelf-life. Current models of fruit softening focus on cell wall disassembly as the major biochemical event regulating fruit softening. Examination of the sequence of cell wall disassembly in ripening Charentais melon fruit suggested that softening could be divided into two distinct phases. The early stage of fruit softening was associated with the regulated disassembly of xyloglucan polymers and the later softening that accompanies over-ripe deterioration was associated with pectin depolymerization. Characterization of cell wall changes in other fruit, including tomato, suggest that this may represent a general model of sequential cell wall disassembly in ripening fruit. Interestingly, the early events of xyloglucan disassembly were not associated with the activation or expression of xyloclucan hydrolases but were associated with the expression of a ripening-regulated expansin gene. Analysis of transgenic tomato fruit with suppressed expansin gene expression or with suppressed polygalacturonase gene expression supports a general model of sequential disassembly of xyloglucan and pectin that control the early and late phases of fruit softening, respectively.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 818A-818
Author(s):  
F.M. Woods ◽  
J.S. Kotrola ◽  
D.G. Himelrick ◽  
T.M. Brasher ◽  
F.M. Basiouny

Fruit of two rabbiteye blueberries (Vaccinium ashei Read cvs. Premier and Tifblue) were analyzed at five stages of growth and development for cell wall softening enzymes in relation to pectin solubilization. The enzymes examined were β-galactosidase, cellulase, pectinesterase, and polygalacturonase. The decrease in fruit firmness was associated with increased activities of cellulase, polygalacturonase, and pectinesterase, which preceded the former enzymes. The activity of β-galactosidase remained relatively unchanged throughout. The pattern of enzyme activities from both cultivars were similar. Results from this study indicate that these enzymes may play a crucial role in overall fruit shelf life and hence postharvest marketing duration.


2005 ◽  
Vol 130 (4) ◽  
pp. 643-648 ◽  
Author(s):  
Rumphan Koslanund ◽  
Douglas D. Archbold ◽  
Kirk W. Pomper

Pawpaw fruit were harvested at the advent of the ripening process and were ripened at room temperature. Based on fruit firmness and respiration and ethylene production rates at harvest and during ripening, fruit were classified into one of four categories: preripening (no to very slight loss of firmness; preclimacteric), early ripening (some softening; increasing rates of ethylene and CO2 production), mid-ripening (soft; at or just past climacteric), and late ripening (very soft; postclimacteric). The activities of the cell-wall degrading enzymes polygalacturonase (PG), endo-(1→4)ß-D-glucanase (EGase), and endo-ß-1,4-mannanase (MAN) were low in the preripening and early ripening stages, increased dramatically by mid-ripening coincident with the respiratory and ethylene climacterics, and decreased at late ripening. However, pectin methylesterase (PME) activity per milligram protein was highest at the green stage when the fruit firmness was high and decreased as ripening progressed. Tissue prints indicated both EGase and MAN increased as ripening proceeded. The EGase activity was evident near the seeds and the surface of the fruit at preripening and eventually spread throughout, while MAN activity was evident near the fruit surface at preripening and was progressively expressed throughout the flesh as fruit ripened. The greatest decline in fruit firmness occurred between pre- and early ripening, before the peak activities of PG, EGase, and MAN, although MAN exhibited the greatest relative increase of the three enzymes in this period. The data suggest that PME may act first to demethylate polygalacturonate and may be followed by the action of the other enzymes resulting in cell wall disassembly and fruit softening in pawpaw.


2017 ◽  
Vol 4 (1) ◽  
pp. 36-47
Author(s):  
R. Osae G. Essilfie J. O. Anim

The study was conducted to assess the effect of different waxing materials on the quality attributes of tomato fruits. A 2 x8 factorial experiment layout in complete randomized design with 16 treatment combinations and 3 replication was adopted.The materials that were used for the experiment are two (2) varieties of tomatoes (Pectomech and Power Rano) and seven(7) waxing material (shea butter, cassava starch, beeswax, and a combination of shea butter + cassava starch, shea butter + beeswax, cassava starch + beeswax, shea butter + cassava starch + beeswax) and a control. Results from the experiment indicated that all waxing treatments delayed the development of weight loss, firmness, pH, total soluble solids, and total titrable acidity. The results also suggested that edible wax coatings delayed the ripening process and colour development of tomato fruits during the storage period and extended the shelf life. However Beewax treatment and its combinations performed better than the other treatments. It was therefore recommended that locally produced wax such as Beewax, Shea butter, Cassava Starch treatments and their combinations could be a good technology for preserving the quality and extending the shelf life of fresh tomato fruit as well as maintaining the physical and chemical properties.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1126
Author(s):  
João A. Silvestre ◽  
Sílvia F. S. Pires ◽  
Vitória Pereira ◽  
Miguel Colaço ◽  
Ana P. L. Costa ◽  
...  

Microbiological contamination of bivalve molluscs is one of the major concerns inherent to food safety, thus depuration is frequently needed to assure food safety levels associated with their consumption. Salinity plays an important role in the metabolic activity of bivalves and as such can influence their depuration capacity. This study aimed to evaluate the effect of salinity (25, 30, 35 and 40) on the efficiency of the depuration process, along with the quality and shelf-life of Crassostrea gigas. For this, a 24-h depuration was carried out, followed by a storage period at 5 ± 1 °C for six days. Microbiological analyses and biochemical parameters related to oxidative stress response were analysed. Escherichia coli load was reduced in only 24 h, disregarding the salinity of the system. After the shelf-life period, the activity of the antioxidant defences at salinities 35 and 40 is higher but is still not sufficient to avoid lipid peroxidation. Over time, there is a decrease in oyster metabolism probably due to being chilled and to the action of exposure to air. In sum, this study suggests salinities between 25 and 30 as preferential for the depuration process of C. gigas and subsequent quality during shelf-life.


Author(s):  
Razieh Niazmand ◽  
Samira Yeganehzad

Abstract Background Barberry has long been used as an herbal remedy since ancient times which is found throughout temperate and subtropical regions of the world. Given the short harvesting season and limited shelf life of the barberry, we evaluated the possibility of using modified atmosphere packaging and oxygen-scavenger sachets to increase its storage period. For this purpose, the physicochemical characterization (antioxidant activity, anthocyanin, phenolic compounds, and ascorbic acid content, acidity, firmness, color, and decay incident) of fresh barberry samples packaged within different atmospheres was investigated over 4 weeks of storage at 4 and 25 °C. The barberries were packaged with low-density polyethylene/polyester (LDPE/PET) films under natural atmosphere (C), N2 gas (N), vacuum (V), or in the presence of an oxygen scavenger (OS). Results The results revealed that with increased storage period, the O2 and CO2 levels inside the packages decreased and increased, respectively. The antioxidant activity and amounts of anthocyanin, phenolic compounds, and ascorbic acid all decreased with increasing storage period. Among the studied atmospheres, the OS and, subsequently, V packages were most capable of maintaining the quality of fresh barberries, with the decay incidence being approximately 30 times lower inside these packages relative to the control. Increasing the storage temperature accelerated the intensity of chemical changes and decay across all samples. Conclusion The barberries inside the OS packages stored at 4 °C (and even at 25 °C) still had good sensory properties in terms of chemical properties, texture, and color after 4 weeks. Fortunately, it seems that this packaging technology makes the exportation and delayed consumption of the fresh barberry possible by maintaining its quality.


Sign in / Sign up

Export Citation Format

Share Document