scholarly journals Sarcopenia: Etiology, Nutritional Approaches, and miRNAs

2021 ◽  
Vol 22 (18) ◽  
pp. 9724
Author(s):  
Roberto Cannataro ◽  
Leandro Carbone ◽  
Jorge L. Petro ◽  
Erika Cione ◽  
Salvador Vargas ◽  
...  

Sarcopenia, an age-related decline in skeletal muscle mass and function, dramatically affects the quality of life. Although there is a consensus that sarcopenia is a multifactorial syndrome, the etiology and underlying mechanisms are not yet delineated. Moreover, research about nutritional interventions to prevent the development of sarcopenia is mainly focused on the amount and quality of protein intake. The impact of several nutrition strategies that consider timing of food intake, anti-inflammatory nutrients, metabolic control, and the role of mitochondrial function on the progression of sarcopenia is not fully understood. This narrative review summarizes the metabolic background of this phenomenon and proposes an integral nutritional approach (including dietary supplements such as creatine monohydrate) to target potential molecular pathways that may affect reduce or ameliorate the adverse effects of sarcopenia. Lastly, miRNAs, in particular those produced by skeletal muscle (MyomiR), might represent a valid tool to evaluate sarcopenia progression as a potential rapid and early biomarker for diagnosis and characterization.

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 370
Author(s):  
Umair Iqbal ◽  
Ravirajsinh N. Jadeja ◽  
Harshit S. Khara ◽  
Sandeep Khurana

Hepatic encephalopathy (HE) is a common neurological consequence in patients with cirrhosis and has a healthcare burden of USD 5370 to 50,120 per patient annually. HE significantly hampers the quality of life and is a major cause of morbidity and mortality. Patients with cirrhosis are at a high risk for protein-calorie malnutrition due to altered metabolism. Current evidence has changed the old belief of protein restriction in patients with cirrhosis and now 1.2 to 1.5 g/kg/day protein intake is recommended. Case series and studies with small numbers of participants showed that a vegetarian protein diet decreases the symptoms of HE when compared to a meat-based diet, but the evidence is limited and requires further larger randomized controlled trials. However, vegetable or milk-based protein diets are good substitutes for patients averse to meat intake. Branch chain amino acids (BCAA) (leucine, isoleucine and valine) have also been shown to be effective in alleviating symptoms of HE and are recommended as an alternative therapy in patients with cirrhosis for the treatment of HE. In this review, we provide an overview of current literature evaluating the role of protein intake in the management of HE in cirrhosis.


2020 ◽  
Vol 21 (15) ◽  
pp. 5236 ◽  
Author(s):  
Evelyn Ferri ◽  
Emanuele Marzetti ◽  
Riccardo Calvani ◽  
Anna Picca ◽  
Matteo Cesari ◽  
...  

Skeletal muscle aging is associated with a significant loss of skeletal muscle strength and power (i.e., dynapenia), muscle mass and quality of life, a phenomenon known as sarcopenia. This condition affects nearly one-third of the older population and is one of the main factors leading to negative health outcomes in geriatric patients. Notwithstanding the exact mechanisms responsible for sarcopenia are not fully understood, mitochondria have emerged as one of the central regulators of sarcopenia. In fact, there is a wide consensus on the assumption that the loss of mitochondrial integrity in myocytes is the main factor leading to muscle degeneration. Mitochondria are also key players in senescence. It has been largely proven that the modulation of mitochondrial functions can induce the death of senescent cells and that removal of senescent cells improves musculoskeletal health, quality, and function. In this review, the crosstalk among mitochondria, cellular senescence, and sarcopenia will be discussed with the aim to elucidate the role that the musculoskeletal cellular senescence may play in the onset of sarcopenia through the mediation of mitochondria.


Author(s):  
José A. Morais

Sarcopenia is a progressive and inevitable loss of skeletal muscle mass and strength associated with ageing that places older adults at high risk for adverse health outcomes. Up to of 15% of older adults suffer negative healthcare consequences because of sarcopenia. Furthermore, it is responsible for two to four times greater risk of disability. Expert groups have proposed clinical oriented criteria based on gait speed <0.8 m/s and low handgrip strength before performing muscle mass assessment. Multiple aetiologies are implicated in the development of sarcopenia including age-related, lifestyle, neurodegeneration, hormonal, and inflammation factors. Resistance exercise training and higher than recommended protein intake are two accessible means to counteract sarcopenia. Hormonal interventions, despite amelioration in muscle and fat masses, have not led to significant gains in function. Sarcopenia shares many features with frailty and can be considered as one of its underlying mechanisms.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pan Liu ◽  
Yun Li ◽  
Lina Ma

Frailty is an age-related clinical syndrome that may increase the risk of falls, disability, hospitalization, and death in older adults. Delaying the progression of frailty helps improve the quality of life in older adults. Caloric restriction (CR) may extend lifespan and reduce the risk of age-related diseases. However, few studies have explored the relationship between CR and frailty. In this review, we focused on the impact of CR on frailty and aimed to identify potential associated mechanisms. Although CR may help prevent frailty, further studies are required to determine the underlying mechanisms and specific CR regimens suitable for use in humans.


GeroScience ◽  
2021 ◽  
Author(s):  
Andrew Wilhelmsen ◽  
Kostas Tsintzas ◽  
Simon W. Jones

AbstractSarcopenia, broadly defined as the age-related decline in skeletal muscle mass, quality, and function, is associated with chronic low-grade inflammation and an increased likelihood of adverse health outcomes. The regulation of skeletal muscle mass with ageing is complex and necessitates a delicate balance between muscle protein synthesis and degradation. The secretion and transfer of cytokines, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), both discretely and within extracellular vesicles, have emerged as important communication channels between tissues. Some of these factors have been implicated in regulating skeletal muscle mass, function, and pathologies and may be perturbed by excessive adiposity. Indeed, adipose tissue participates in a broad spectrum of inter-organ communication and obesity promotes the accumulation of macrophages, cellular senescence, and the production and secretion of pro-inflammatory factors. Pertinently, age-related sarcopenia has been reported to be more prevalent in obesity; however, such effects are confounded by comorbidities and physical activity level. In this review, we provide evidence that adiposity may exacerbate age-related sarcopenia and outline some emerging concepts of adipose-skeletal muscle communication including the secretion and processing of novel myokines and adipokines and the role of extracellular vesicles in mediating inter-tissue cross talk via lncRNAs and miRNAs in the context of sarcopenia, ageing, and obesity. Further research using advances in proteomics, transcriptomics, and techniques to investigate extracellular vesicles, with an emphasis on translational, longitudinal human studies, is required to better understand the physiological significance of these factors, the impact of obesity upon them, and their potential as therapeutic targets in combating muscle wasting.


2017 ◽  
Vol 61 (3) ◽  
pp. 339-348 ◽  
Author(s):  
Anne McArdle ◽  
Malcolm J. Jackson

The loss of muscle mass and weakness that accompanies ageing is a major contributor to physical frailty and loss of independence in older people. A failure of muscle to adapt to physiological stresses such as exercise is seen with ageing and disruption of redox regulated processes and stress responses are recognized to play important roles in theses deficits. The role of redox regulation in control of specific stress responses, including the generation of heat shock proteins (HSPs) by muscle appears to be particularly important and affected by ageing. Transgenic and knockout studies in experimental models in which redox and HSP responses were modified have demonstrated the importance of these processes in maintenance of muscle mass and function during ageing. New data also indicate the potential of these processes to interact with and influence ageing in other tissues. In particular the roles of redox signalling and HSPs in regulation of inflammatory pathways appears important in their impact on organismal ageing. This review will briefly indicate the importance of this area and demonstrate how an understanding of the manner in which redox and stress responses interact and how they may be controlled offers considerable promise as an approach to ameliorate the major functional consequences of ageing of skeletal muscle (and potentially other tissues) in man.


2020 ◽  
Vol 7 ◽  
Author(s):  
Paul T. Morgan ◽  
Benoit Smeuninx ◽  
Leigh Breen

Sarcopenia is of important clinical relevance for loss of independence in older adults. The prevalence of obesity in combination with sarcopenia (“sarcopenic-obesity”) is increasing at a rapid rate. However, whilst the development of sarcopenia is understood to be multi-factorial and harmful to health, the role of obesity from a protective and damaging perspective on skeletal muscle in aging, is poorly understood. Specifically, the presence of obesity in older age may be accompanied by a greater volume of skeletal muscle mass in weight-bearing muscles compared with lean older individuals, despite impaired physical function and resistance to anabolic stimuli. Collectively, these findings support a potential paradox in which obesity may protect skeletal muscle mass in older age. One explanation for these paradoxical findings may be that the anabolic response to weight-bearing activity could be greater in obese vs. lean older individuals due to a larger mechanical stimulus, compensating for the heightened muscle anabolic resistance. However, it is likely that there is a complex interplay between muscle, adipose, and external influences in the aging process that are ultimately harmful to health in the long-term. This narrative briefly explores some of the potential mechanisms regulating changes in skeletal muscle mass and function in aging combined with obesity and the interplay with sarcopenia, with a particular focus on muscle morphology and the regulation of muscle proteostasis. In addition, whilst highly complex, we attempt to provide an updated summary for the role of obesity from a protective and damaging perspective on muscle mass and function in older age. We conclude with a brief discussion on treatment of sarcopenia and obesity and a summary of future directions for this research field.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S86-S87
Author(s):  
Lars Holm ◽  
Rasmus Bechshoeft ◽  
Soren Reitelseder ◽  
Kenneth Mertz ◽  
Jacob Bulow ◽  
...  

Abstract The requirement of an enhanced dietary protein intake to counteract the age-related loss of muscle mass is still debated. Further, the dinner meal generally contains the majority of protein and energy and since, the muscle of older adults responds less to protein intake than that of younger adults it is hypothesized that older adults would benefit from taking more protein in at other meals. The aim of this study was to investigate whether the provision of protein supplements for breakfast and lunch meals over the course of a year would make healthy, older, home-dwelling adults (N=136) take in more protein and whether that then would affect their muscle mass (primary outcome) and a number of metabolic health parameters, muscle strength parameters and functional capabilities. More than 77% ingested more than 75% of the provided supplements, irrespective of supplementation type (isocaloric carbohydrate; collagen hydrolysate low quality protein: whey hydrolysate high quality protein). Providing supplementation for a year among older adults makes them comply very well. However, provision of extra protein has no impact on the muscle mass or strength or on the functional parameters. Further, we studied the impact of adding resistance training on top of WHEY protein supplementation and found that heavy more than light-load resistance training affects fat-free mass and maximal-voluntary contraction. Daily protein intake can be enhanced by supplementation but do not impact muscle mass and function over the course of a year, where heavy resistance training on top benefits, but to a lesser than expected degree.


2016 ◽  
Vol 1 (13) ◽  
pp. 162-168
Author(s):  
Pippa Hales ◽  
Corinne Mossey-Gaston

Lung cancer is one of the most commonly diagnosed cancers across Northern America and Europe. Treatment options offered are dependent on the type of cancer, the location of the tumor, the staging, and the overall health of the person. When surgery for lung cancer is offered, difficulty swallowing is a potential complication that can have several influencing factors. Surgical interaction with the recurrent laryngeal nerve (RLN) can lead to unilateral vocal cord palsy, altering swallow function and safety. Understanding whether the RLN has been preserved, damaged, or sacrificed is integral to understanding the effect on the swallow and the subsequent treatment options available. There is also the risk of post-surgical reduction of physiological reserve, which can reduce the strength and function of the swallow in addition to any surgery specific complications. As lung cancer has a limited prognosis, the clinician must also factor in the palliative phase, as this can further increase the burden of an already compromised swallow. By understanding the surgery and the implications this may have for the swallow, there is the potential to reduce the impact of post-surgical complications and so improve quality of life (QOL) for people with lung cancer.


Sign in / Sign up

Export Citation Format

Share Document