scholarly journals Immunomodulatory Properties of BRAF and MEK Inhibitors Used for Melanoma Therapy—Paradoxical ERK Activation and Beyond

2021 ◽  
Vol 22 (18) ◽  
pp. 9890
Author(s):  
Thomas Jung ◽  
Maximilian Haist ◽  
Michael Kuske ◽  
Stephan Grabbe ◽  
Matthias Bros

The advent of mitogen–activated protein kinase (MAPK) inhibitors that directly inhibit tumor growth and of immune checkpoint inhibitors (ICI) that boost effector T cell responses have strongly improved the treatment of metastatic melanoma. In about half of all melanoma patients, tumor growth is driven by gain–of–function mutations of BRAF (v–rat fibrosarcoma (Raf) murine sarcoma viral oncogene homolog B), which results in constitutive ERK activation. Patients with a BRAF mutation are regularly treated with a combination of BRAF and MEK (MAPK/ERK kinase) inhibitors. Next to the antiproliferative effects of BRAF/MEKi, accumulating preclinical evidence suggests that BRAF/MEKi exert immunomodulatory functions such as paradoxical ERK activation as well as additional effects in non–tumor cells. In this review, we present the current knowledge on the immunomodulatory functions of BRAF/MEKi as well as the non–intended effects of ICI and discuss the potential synergistic effects of ICI and MAPK inhibitors in melanoma treatment.

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Periklis Kyriazis ◽  
Abhinav Tiwary ◽  
Jonathan Freeman ◽  
Daniel Landry ◽  
Gregory Braden

Abstract Background Immune checkpoint inhibitors and mitogen-activated protein kinase inhibitors have become the standard of care in patients with advanced melanoma bearing V600 mutations. However, little is known about their nephrotoxicity. To date, only two cases of anti-glomerular basement membrane glomerulonephritis after exposure to checkpoint inhibitors have been documented. Herein, we report the first case of a patient with metastatic melanoma who developed linear Immunoglobulin G 3+, Immunoglobulin A 2+, kappa 2+, lambda 1+ anti-glomerular basement membrane glomerulonephritis with negative serology following treatment with checkpoint inhibitors and subsequently mitogen-activated protein kinase inhibitors. Case presentation A 58-year-old Caucasian male was referred to our outpatient nephrology clinic with acute kidney injury and proteinuria. He had received three cycles of ipilimumab and nivolumab for recurrent melanoma positive for the BRAF V600E mutation with metastasis to the lungs. Immunotherapy had been discontinued in the setting of severe adverse effects including dermatitis, colitis, and hepatitis. Because of persistent bilateral lung metastases and left pleural metastases, the patient had been initiated on dabrafenib and trametinib until his presentation to our clinic 6 months later. On presentation, his blood pressure was 172/89 mm/Hg and had 2+ edema bilaterally. His creatinine level was 2.4 mg/dL from a previous normal baseline with a urinary protein-to-creatinine ratio of 2 g/g. His urinalysis showed dysmorphic erythrocytes and red blood cell casts. Serologic testing was negative for antineutrophilic cytoplasmic antibodies, proteinase 3 antigen, myeloperoxidase, and anti-glomerular basement membrane antibody. Complement levels were normal. A renal biopsy showed focal crescentic (2 of 15 glomeruli with cellular crescents), proliferative, and sclerosing glomerulonephritis with diffuse linear staining of glomerular capillary loops dominant for IgG (3+), IgA (2+), kappa (2+), and lambda (1+) minimal changes. He was initiated on oral cyclophosphamide and pulse intravenous methylprednisolone followed by oral prednisone for 6 months, which stabilized his renal function until reinitiation of immunotherapy. Conclusions Acute kidney injury is an increasingly reported adverse effect of both drug classes, mostly affecting the tubulointerstitial compartment and infrequently the glomerulus. Although the biologic effect of these drugs on immune cells is not entirely understood, it is possible that BRAF-induced podocyte injury in combination with direct T-cell-mediated glomerular injury facilitated by checkpoint inhibitors led to the unmasking of cryptic antigens, loss of self-tolerance, and autoimmunity. More importantly, we show that treatment with corticosteroids and cyclophosphamide was able to improve and stabilize our patient’s renal function until the reinitiation of immunotherapy.


1998 ◽  
Vol 80 (3) ◽  
pp. 1352-1361 ◽  
Author(s):  
Saobo Lei ◽  
William F. Dryden ◽  
Peter A. Smith

Lei, Saobo, William F. Dryden, and Peter A. Smith. Involvement of Ras/MAP kinase in the regulation of Ca2+ channels in adult bullfrog sympathetic neurons by nerve growth factor. J. Neurophysiol. 80: 1352–1361, 1998. The cellular mechanisms that underlie nerve growth factor (NGF) induced increase in Ca2+-channel current in adult bullfrog sympathetic B-neurons were examined by whole cell recording techniques. Cells were maintained at low density in neuron-enriched, defined-medium, serum-free tissue culture for 6 days in the presence or absence of NGF (200 ng/ml). The increase in Ba2+ current ( I Ba) density induced by NGF was attenuated by the RNA synthesis inhibitor cordycepin (20 μM), by the DNA transcription inhibitor actinomycin D (0.01 μg/ml), by inhibitors of Ras isoprenylation (perillic acid 0.1–1.0 mM or α-hydroxyfarnesylphosphonic acid 10–100 μM), by tyrosine kinase inhibitors genistein (20 μM) or lavendustin A (1 μM), and by PD98059 (10–100 μM), an inhibitor of mitogen-activated protein kinase kinase. Inhibitors of the phosphatidylinositol 3-kinase (PI3K) pathway (wortmannin, 100 nM, or LY29400, 100 μM) were ineffective as were inhibitors of phospholipase Cγ (U73122 or neomycin, both 100 μM). The effect of NGF persisted in Ca2+-free medium that contained 1.8 mM Mg2+ and 2 mM ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid. It was mimicked by a Trk antibody that was capable of inducing neurite outgrowth in explant cultures of bullfrog sympathetic ganglion. Antibodies raised against the low-affinity p75 neurotrophin receptor were ineffective in blocking the effect of NGF on I Ba. These results suggest that NGF-induced increase in Ca2+ channel current in adult sympathetic neurons results, at least in part, from new channel synthesis after Trk activation of Ras and mitogen activated protein kinase by a mechanism that is independent of extracellular Ca2+.


2016 ◽  
Vol 25 (139) ◽  
pp. 71-76 ◽  
Author(s):  
Emmanuelle Kempf ◽  
Benoît Rousseau ◽  
Benjamin Besse ◽  
Luis Paz-Ares

KRASmutations are the most frequent molecular abnormalities found in one out of four nonsmall cell lung cancers (NSCLC). Their incidence increases in cases of adenocarcinoma, smokers and Caucasian patients. Their negative value in terms of prognosis and responsiveness to both standard chemotherapy and targeted therapies remains under debate. Many drugs have been developed specifically forKRAS-mutated NSCLC patients. Direct inhibition ofRASactivation failed to show any clinical efficacy. Inhibition of downstream targets of the mitogen-activated protein kinase (MEK) pathway is a promising strategy: phase II combinations of MEK 1/2 kinase inhibitors with chemotherapy doubled patients’ clinical outcomes. One phase III trial in such a setting is ongoing. Double inhibition of MEK and epidermal growth factor receptor proteins is currently being assessed in early-phase trials. The association with mammalian target of rapamycin pathway inhibition leads to non-manageable toxicity. Other strategies, such as inhibition of molecular heat-shock proteins 90 or focal adhesion kinase are currently assessed. Abemaciclib, a cyclin-dependent kinase 4/6 inhibitor, showed promising results in a phase I trial, with a 54% disease control rate. Results of an ongoing phase III trial are warranted. Immunotherapy might be the next relevant step inKRAS-mutated NSCLC management due to the high burden of associated mutations and neo-antigens.


2001 ◽  
Vol 280 (2) ◽  
pp. L354-L362 ◽  
Author(s):  
Pamela M. Lindroos ◽  
Yi-Zhe Wang ◽  
Annette B. Rice ◽  
James C. Bonner

Upregulation of the platelet-derived growth factor (PDGF) receptor-α (PDGFR-α) is a mechanism of myofibroblast hyperplasia during pulmonary fibrosis. We previously identified interleukin (IL)-1β as a major inducer of the PDGFR-α in rat pulmonary myofibroblasts in vitro. In this study, we report that staurosporine, a broad-spectrum kinase inhibitor, upregulates PDGFR-α gene expression and protein. A variety of other kinase inhibitors did not induce PDGFR-α expression. Staurosporine did not act via an IL-1β autocrine loop because the IL-1 receptor antagonist protein did not block staurosporine-induced PDGFR-α expression. Furthermore, staurosporine did not activate a variety of signaling molecules that were activated by IL-1β, including nuclear factor-κB, extracellular signal-regulated kinase, and c-Jun NH2-terminal kinase. However, both staurosporine- and IL-1β-induced phosphorylation of p38 mitogen-activated protein kinase and upregulation of PDGFR-α by these two agents was inhibited by the p38 inhibitor SB-203580. Finally, staurosporine inhibited basal and PDGF-stimulated mitogenesis over the same concentration range that induced PDGFR-α expression. Collectively, these data demonstrate that staurosporine is a useful tool for elucidating the signaling mechanisms that regulate PDGFR expression in lung connective tissue cells and possibly for evaluating the role of the PDGFR-α as a growth arrest-specific gene.


2021 ◽  
Vol 14 (8) ◽  
pp. e243264
Author(s):  
Chung-Shien Lee ◽  
Emily Miao ◽  
Kasturi Das ◽  
Nagashree Seetharamu

BRAF (v-raf murine sarcoma viral oncogene homolog B1) and MEK (mitogen-activated protein kinase kinase) inhibitors have been shown to improve clinical outcomes in tumours presenting with mutations in the BRAF gene. The most common form of BRAF mutation is V600E/K and has been shown to occur in thyroid cancers. Treatment data for patients harbouring less frequent BRAF mutations are limited. In vitro studies have shown that mutations in codons 599–601 increase kinase activity similar to that in V600E mutations, which suggests that BRAF and MEK inhibitors could be an effective treatment option. Here, we report a case of a patient with thyroid carcinoma harbouring a rare amino acid insertion in codon 599 of the BRAF gene (T599_V600insT) treated with a BRAF and MEK inhibitor.


2021 ◽  
Vol 16 (7) ◽  
pp. 231-239
Author(s):  
Muthu Kumar Thirunavukkarasu ◽  
Ramanathan Karuppasamy

Aberrant stimulation of MAPK (Mitogen-activated protein kinase) signaling pathway triggers the dysregulated cell growth and resistance to apoptosis in a wide variety of tumors especially in NSCLC (Nonsmall cell lung cancer). Most of the research is on treating lung cancer by targeting the MAPK pathway receptors. Nevertheless, it is essential to consider interconnections and mode of action to resolve the drug resistance ad feedback loops during the treatment with checkpoint inhibitors. Here we describe the overall mechanism of MAPK pathway, oncogenic mutations and precise information regarding the drug compounds for each receptor in this pathway. Further, in-depth insights into this review could be beneficial for the empathetic discovery of inhibitors for NSCLC against this pathway.


Sign in / Sign up

Export Citation Format

Share Document