scholarly journals GmFULc Is Induced by Short Days in Soybean and May Accelerate Flowering in Transgenic Arabidopsis thaliana

2021 ◽  
Vol 22 (19) ◽  
pp. 10333
Author(s):  
Jingzhe Sun ◽  
Mengyuan Wang ◽  
Chuanlin Zhao ◽  
Tianmeng Liu ◽  
Zhengya Liu ◽  
...  

Flowering is an important developmental process from vegetative to reproductive growth in plant; thus, it is necessary to analyze the genes involved in the regulation of flowering time. The MADS-box transcription factor family exists widely in plants and plays an important role in the regulation of flowering time. However, the molecular mechanism of GmFULc involved in the regulation of plant flowering is not very clear. In this study, GmFULc protein had a typical MADS domain and it was a member of MADS-box transcription factor family. The expression analysis revealed that GmFULc was induced by short days (SD) and regulated by the circadian clock. Compared to wild type (WT), overexpression of GmFULc in transgenic Arabidopsis caused significantly earlier flowering time, while ful mutants flowered later, and overexpression of GmFULc rescued the late-flowering phenotype of ful mutants. ChIP-seq of GmFULc binding sites identified potential direct targets, including TOPLESS (TPL), and it inhibited the transcriptional activity of TPL. In addition, the transcription levels of FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and LEAFY (LFY) in the downstream of TPL were increased in GmFULc- overexpressionArabidopsis, suggesting that the early flowering phenotype was associated with up-regulation of these genes. Our results suggested that GmFULc inhibited the transcriptional activity of TPL and induced expression of FT, SOC1 and LFY to promote flowering.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xue Yang ◽  
Yuntong Zhang ◽  
Jinming Shan ◽  
Jingzhe Sun ◽  
Dongmei Li ◽  
...  

Photoperiod is one of the main climatic factors that determine flowering time and yield. Some members of the INDETERMINATE DOMAIN (IDD) transcription factor family have been reported to be involved in regulation of flowering time in Arabidopsis, maize, and rice. In this study, the domain analysis showed that GmIDD had a typical ID domain and was a member of the soybean IDD transcription factor family. Quantitative real-time PCR analysis showed that GmIDD was induced by short day conditions in leaves and regulated by circadian clock. Under long day conditions, transgenic Arabidopsis overexpressing GmIDD flowered earlier than wild-type, and idd mutants flowered later, while the overexpression of GmIDD rescued the late-flowering phenotype of idd mutants. Chromatin immunoprecipitation sequencing assays of GmIDD binding sites in GmIDD-overexpression (GmIDD-ox) Arabidopsis further identified potential direct targets, including a transcription factor, AGAMOUS-like 18 (AGL18). GmIDD might inhibit the transcriptional activity of flower repressor AGL18 by binding to the TTTTGGTCC motif of AGL18 promoter. Furthermore, the results also showed that GmIDD overexpression increased the transcription levels of flowering time-related genes FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), LEAFY (LFY) and APETALA1 (AP1) in Arabidopsis. Taken together, GmIDD appeared to inhibit the transcriptional activity of AGL18 and induced the expression of FT gene to promote Arabidopsis flowering.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ian Edward Gentle ◽  
Isabel Moelter ◽  
Mohamed Tarek Badr ◽  
Konstanze Döhner ◽  
Michael Lübbert ◽  
...  

AbstractMutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.


2021 ◽  
Vol 62 (2) ◽  
pp. 249-264
Author(s):  
Zai-Bao Zhang ◽  
Yuan-Jin Jin ◽  
Hou-Hong Wan ◽  
Lin Cheng ◽  
Zhi-Guo Feng

2020 ◽  
Vol 21 (24) ◽  
pp. 9574
Author(s):  
María José Rodríguez Colman ◽  
Joaquim Ros ◽  
Elisa Cabiscol

Hcm1 is a member of the forkhead transcription factor family involved in segregation, spindle pole dynamics, and budding in Saccharomyces cerevisiae. Our group described the role of Hcm1 in mitochondrial biogenesis and stress resistance, and in the cellular adaptation to mitochondrial respiratory metabolism when nutrients decrease. Regulation of Hcm1 activity occurs at the protein level, subcellular localization, and transcriptional activity. Here we report that the amount of protein increased in the G1/S transition phase when the factor accumulated in the nucleus. In the G2/M phases, the Hcm1 amount decreased, and it was translocated outside the nucleus with a network-like localization. Preparation of highly purified mitochondria by a sucrose gradient density demonstrated that Hcm1 colocalized with mitochondrial markers, inducing expression of COX1, a mitochondrial encoded subunit of cytochrome oxidase, in the G2/M phases. Taken together, these results show a new localization of Hcm1 and suggest that it acts as a mitochondrial transcription factor regulating the metabolism of this organelle.


2001 ◽  
Vol 79 (6) ◽  
pp. 657-665 ◽  
Author(s):  
Quintin J Steynen ◽  
Dee A Bolokoski ◽  
Elizabeth A Schultz

We have identified three phases within the wild-type Arabidopsis thaliana (L.) Heynh. rosette, based on significant differences in leaf shape, size, vascular pattern, and presence of abaxial trichomes. To test the hypothesis that a single, central mechanism controls the progression through all plant phases and that conditions that alter the time to flowering will also alter the progression through vegetative phases, we analysed the rosette phases under such conditions. In support of our hypothesis, we determined that those conditions (loss of LEAFY activity, short days) that decelerate time to flowering show decelerated progression through the rosette phases, while those conditions (loss of TERMINAL FLOWER, overexpression of LEAFY, low light) that accelerate time to flowering show accelerated progression through the rosette phases. In all conditions except short days, the length of the first phase was unaffected, indicating that this phase is less susceptible to influences of the central mechanism. Progression through the subsequent two rosette phases was accelerated differentially, such that the second phase was affected more strongly than the first. This supports the idea that, in the rosette, as in the inflorescence, the inhibition of phase transition by the central mechanism is gradually decreasing.Key words: phase change, flowering time, Arabidopsis thaliana, LEAFY, TERMINAL FLOWER, heteroblasty.


2020 ◽  
Vol 21 (6) ◽  
pp. 2004 ◽  
Author(s):  
Xiao Zhang ◽  
Lu Li ◽  
Ce Yang ◽  
Yanbo Cheng ◽  
Zhenzhen Han ◽  
...  

The MADS-box transcription factors (TFs) are essential in regulating plant growth and development, and conferring abiotic and metal stress resistance. This study aims to investigate GsMAS1 function in conferring tolerance to aluminum stress in Arabidopsis. The GsMAS1 from the wild soybean BW69 line encodes a MADS-box transcription factor in Glycine soja by bioinformatics analysis. The putative GsMAS1 protein was localized in the nucleus. The GsMAS1 gene was rich in soybean roots presenting a constitutive expression pattern and induced by aluminum stress with a concentration-time specific pattern. The analysis of phenotypic observation demonstrated that overexpression of GsMAS1 enhanced the tolerance of Arabidopsis plants to aluminum (Al) stress with larger values of relative root length and higher proline accumulation compared to those of wild type at the AlCl3 treatments. The genes and/or pathways regulated by GsMAS1 were further investigated under Al stress by qRT-PCR. The results indicated that six genes resistant to Al stress were upregulated, whereas AtALMT1 and STOP2 were significantly activated by Al stress and GsMAS1 overexpression. After treatment of 50 μM AlCl3, the RNA abundance of AtALMT1 and STOP2 went up to 17-fold and 37-fold than those in wild type, respectively. Whereas the RNA transcripts of AtALMT1 and STOP2 were much higher than those in wild type with over 82% and 67% of relative expression in GsMAS1 transgenic plants, respectively. In short, the results suggest that GsMAS1 may increase resistance to Al toxicity through certain pathways related to Al stress in Arabidopsis.


2012 ◽  
Vol 161 (2) ◽  
pp. 813-823 ◽  
Author(s):  
Daniel Uddenberg ◽  
Johan Reimegård ◽  
David Clapham ◽  
Curt Almqvist ◽  
Sara von Arnold ◽  
...  

2019 ◽  
Vol 39 (7) ◽  
pp. 1173-1186
Author(s):  
Shi-Hui Niu ◽  
Shuang-Wei Liu ◽  
Jing-Jing Ma ◽  
Fang-Xu Han ◽  
Yue Li ◽  
...  

Abstract It has long been known that the pollen shedding time in pine trees is correlated with temperature, but the molecular basis for this has remained largely unknown. To better understand the mechanisms driving temperature response and to identify the hub regulators of pollen shedding time regulation in Pinus tabuliformis Carr., we identified a set of temperature-sensitive genes by carrying out a comparative transcriptome analysis using six early pollen shedding trees (EPs) and six late pollen shedding trees (LPs) during mid-winter and at three consecutive time points in early spring. We carried out a weighted gene co-expression network analysis and constructed a transcription factor (TF) collaborative network, merging the common but differentially expressed TFs of the EPs and LPs into a joint network. We found five hub genes in the core TF module whose expression was rapidly induced by low temperatures. The transcriptional activity of this TF module was strongly associated with pollen shedding time, and likely to produce the fine balance between cold hardiness and growth activity in early spring. We confirmed the key role of temperature in regulating flowering time and identified a transcription factor module associated with pollen shedding time in P. tabuliformis. This suggests that repression of growth activity by repressors is the main mechanism balancing growth and cold hardiness in pine trees in early spring. Our results provide new insights into the molecular mechanisms regulating seasonal flowering time in pines.


Sign in / Sign up

Export Citation Format

Share Document