scholarly journals GsMAS1 Encoding a MADS-box Transcription Factor Enhances the Tolerance to Aluminum Stress in Arabidopsis thaliana

2020 ◽  
Vol 21 (6) ◽  
pp. 2004 ◽  
Author(s):  
Xiao Zhang ◽  
Lu Li ◽  
Ce Yang ◽  
Yanbo Cheng ◽  
Zhenzhen Han ◽  
...  

The MADS-box transcription factors (TFs) are essential in regulating plant growth and development, and conferring abiotic and metal stress resistance. This study aims to investigate GsMAS1 function in conferring tolerance to aluminum stress in Arabidopsis. The GsMAS1 from the wild soybean BW69 line encodes a MADS-box transcription factor in Glycine soja by bioinformatics analysis. The putative GsMAS1 protein was localized in the nucleus. The GsMAS1 gene was rich in soybean roots presenting a constitutive expression pattern and induced by aluminum stress with a concentration-time specific pattern. The analysis of phenotypic observation demonstrated that overexpression of GsMAS1 enhanced the tolerance of Arabidopsis plants to aluminum (Al) stress with larger values of relative root length and higher proline accumulation compared to those of wild type at the AlCl3 treatments. The genes and/or pathways regulated by GsMAS1 were further investigated under Al stress by qRT-PCR. The results indicated that six genes resistant to Al stress were upregulated, whereas AtALMT1 and STOP2 were significantly activated by Al stress and GsMAS1 overexpression. After treatment of 50 μM AlCl3, the RNA abundance of AtALMT1 and STOP2 went up to 17-fold and 37-fold than those in wild type, respectively. Whereas the RNA transcripts of AtALMT1 and STOP2 were much higher than those in wild type with over 82% and 67% of relative expression in GsMAS1 transgenic plants, respectively. In short, the results suggest that GsMAS1 may increase resistance to Al toxicity through certain pathways related to Al stress in Arabidopsis.

2020 ◽  
Author(s):  
Lu Li ◽  
Xingang Li ◽  
Ce Yang ◽  
Yanbo Cheng ◽  
Zhandong Cai ◽  
...  

AbstractThe ethylene response factor (ERF) transcription factor is a subfamily of AP2/ERF superfamily in plants, which plays multiple roles in plant growth and development as well as stress response. In this study, we found that the GsERF gene from BW69 line of wild soybean held a constitutive expression pattern and induced by aluminum stress with more transcripts in soybean root. The putative GsERF protein containing an AP2 domain was in the nucleus and transactivation activity. In addition, the overexpression of the GsERF gene enhanced root relative length rate in Arabidopsis and shallow staining by hematoxylin under the treatments of AlCl3. The ethylene synthesis related genes such as ACS4, ACS5 and ACS6 are upregulated in the GsERF overexpressed plants than those in wild type plants under the treatment of AlCl3. Furthermore, expression levels of stress/ABA-responsive marker genes, including ABI1, ABI2, ABI4, ABI5, RD29B and RD22 in transgenic lines compared with those in wild type Arabidopsis were affected by AlCl3 treatments. Taken together, the results indicate that overexpression of GsERF may enhance aluminum tolerance through an ethylene-mediated pathway and/or ABA signaling pathway in Arabidopsis thaliana.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 586
Author(s):  
Wei Li ◽  
Mu Peng ◽  
Zhen Wang ◽  
Yingdong Bi ◽  
Miao Liu ◽  
...  

Wild soybean germplasm is distributed widely in China, particularly in Heilongjiang Province. In this study, 242 wild soybean accessions from four agricultural divisions in Heilongjiang Province were evaluated based on six qualitative and eight quantitative traits. Results showed that a large amount of variation occurred in these evaluated traits. Abundant qualitative traits included the wild type (78.51%), purple flowers (90.50%), needle leaf (39.26%), black seed (83.88%), brown hilum (52.07%), and mud film (87.60). Results of multivariate analysis based on quantitative traits showed that 100-seed weight, seeds weight per plant, number of seeds per plant, number of effective pods, and number of invalid pods were significantly different among samples (p < 0.05). A total of 27 germplasms were screened. Cluster analysis identified the 242 accessions into two groups, not following the geographical distribution pattern, with rich wild soybean resources revealed in the northern site. The present study indicated that wild soybean in Heilongjiang Province should be conserved in situ. The rich genetic diversity revealed in soybeans of different sites in Heilongjiang Province suggested its significant potential utilization in genetic improvement and breakthrough for soybean breeding. This information will help to exploit and conserve wild soybean accessions in Heilongjiang Province.


2021 ◽  
Vol 22 (24) ◽  
pp. 13264
Author(s):  
Ke Wen ◽  
Huanting Pan ◽  
Xingang Li ◽  
Rong Huang ◽  
Qibin Ma ◽  
...  

The toxicity of aluminum (Al) in acidic soil limits global crop yield. The ATP-binding cassette (ABC) transporter-like gene superfamily has functions and structures related to transportation, so it responds to aluminum stress in plants. In this study, one half-size ABC transporter gene was isolated from wild soybeans (Glycine soja) and designated GsABCI1. By real-time qPCR, GsABCI1 was identified as not specifically expressed in tissues. Phenotype identification of the overexpressed transgenic lines showed increased tolerance to aluminum. Furthermore, GsABCI1 transgenic plants exhibited some resistance to aluminum treatment by ion translocation or changing root components. This work on the GsABCI1 identified the molecular function, which provided useful information for understanding the gene function of the ABC family and the development of new aluminum-tolerant soybean germplasm.


2020 ◽  
Vol 21 (3) ◽  
pp. 1023 ◽  
Author(s):  
Qi Jia ◽  
Song Sun ◽  
Defeng Kong ◽  
Junliang Song ◽  
Lumei Wu ◽  
...  

Inositol polyphosphate 5-phosphatases (5PTases) function in inositol signaling by regulating the catabolism of phosphoinositol derivatives. Previous reports showed that 5PTases play a critical role in plant development and stress responses. In this study, we identified a novel 5PTase gene, Gs5PTase8, from the salt-tolerance locus of chromosome 3 in wild soybean (Glycine soja). Gs5PTase8 is highly up-regulated under salt treatment. It is localized in the nucleus and plasma membrane with a strong signal in the apoplast. Ectopic expression of Gs5PTase8 significantly increased salt tolerance in transgenic BY-2 cells, soybean hairy roots and Arabidopsis, suggesting Gs5PTase8 could increase salt tolerance in plants. The overexpression of Gs5PTase8 significantly enhanced the activities of catalase and ascorbate peroxidase under salt stress. The seeds of Gs5PTase8-transgenic Arabidopsis germinated earlier than the wild type under abscisic acid treatment, indicating Gs5PTase8 would alter ABA sensitivity. Besides, transcriptional analyses showed that the stress-responsive genes, AtRD22, AtRD29A and AtRD29B, were induced with a higher level in the Gs5PTase8-transgenic Arabidopsis plants than in the wild type under salt stress. These results reveal that Gs5PTase8 play a positive role in salt tolerance and might be a candidate gene for improving soybean adaptation to salt stress.


2004 ◽  
Vol 3 (2) ◽  
pp. 564-566 ◽  
Author(s):  
Ricardo Escalante ◽  
Negin Iranfar ◽  
Leandro Sastre ◽  
William F. Loomis

ABSTRACT Analysis of microarrays containing 6,345 Dictyostelium discoideum genes has identified 21 whose expression is dependent on the MADS box transcription factor SrfA. In wild-type cells, all of these genes are induced late in development. At least four of them are necessary for proper spore differentiation, stability, and/or germination.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nicolás Cruz ◽  
Tamara Méndez ◽  
Patricio Ramos ◽  
Daniela Urbina ◽  
Andrea Vega ◽  
...  

AbstractThe molecular mechanisms underlying inclination responses in trees are unclear. In this study, we identified a MADS-box transcription factor differentially expressed early after inclination in the stems of Pinus radiata D. Don. PrMADS10 has a CDS of 582 bp and encodes a group II MADS-box transcription factor. We measured highest accumulation of this transcript on the lower side of inclined pine stems. In an effort to identify putative targets, we stably transformed Arabidopsis thaliana with a 35S::PrMADS10 construct. Transcriptome analysis revealed 1,219 genes differentially-expressed, with 690 and 529 genes up- and down-regulated respectively, when comparing the transgenic and wild-type. Differentially-expressed genes belong to different biological processes, but were enriched in cell wall remodeling and phenylpropanoid metabolic functions. Interestingly, lignin content was 30% higher in transgenic as compared to wild-type plants consistent with observed changes in gene expression. Differentially expressed transcription factors and phenylpropanoid genes were analyzed using STRING. Several MYB and NAC transcription factors showed interactions with genes of the phenylpropanoid pathway. Together, these results implicate PrMADS10 as a regulatory factor, triggering the expression of other transcription factors and genes involved in the synthesis of lignin.


2013 ◽  
Vol 26 (12) ◽  
pp. 1378-1394 ◽  
Author(s):  
Thuat Van Nguyen ◽  
Cathrin Kröger ◽  
Jakob Bönnighausen ◽  
Wilhelm Schäfer ◽  
Jörg Bormann

Fusarium graminearum is a necrotrophic plant pathogen of cereals that produces mycotoxins such as deoxynivalenol (DON) and zearalenone (ZEA) in grains. The stress-activated mitogen-activated protein kinase FgOS-2 is a central regulator in F. graminearum and controls, among others, virulence and DON and ZEA production. Here, we characterized the ATF/CREB-activating transcription factor FgAtf1, a regulator that functions downstream of FgOS-2. We created deletion and overexpression mutants of Fgatf1, the latter being also in an FgOS-2 deletion mutant. FgAtf1 localizes to the nucleus and appears to interact with FgOS-2 under osmotic stress conditions. Deletion mutants in Fgatf1 (ΔFgatf1) are more sensitive to osmotic stress and less sensitive to oxidative stress compared with the wild type. Furthermore, sexual reproduction is delayed. ΔFgatf1 strains produced higher amounts of DON under in vitro induction conditions than that of the wild type. However, during wheat infection, DON production by ΔFgatf1 is strongly reduced. The ΔFgatf1 strains displayed strongly reduced virulence to wheat and maize. Interestingly, constitutive expression of Fgatf1 in the wild type led to hypervirulence on wheat, maize, and Brachypodium distachyon. Moreover, constitutive expression of Fgatf1 in the ΔFgOS-2 mutant background almost complements ΔFgOS-2-phenotypes. These data suggest that FgAtf1 may be the most important transcription factor regulated by FgOS-2.


2021 ◽  
Vol 22 (19) ◽  
pp. 10333
Author(s):  
Jingzhe Sun ◽  
Mengyuan Wang ◽  
Chuanlin Zhao ◽  
Tianmeng Liu ◽  
Zhengya Liu ◽  
...  

Flowering is an important developmental process from vegetative to reproductive growth in plant; thus, it is necessary to analyze the genes involved in the regulation of flowering time. The MADS-box transcription factor family exists widely in plants and plays an important role in the regulation of flowering time. However, the molecular mechanism of GmFULc involved in the regulation of plant flowering is not very clear. In this study, GmFULc protein had a typical MADS domain and it was a member of MADS-box transcription factor family. The expression analysis revealed that GmFULc was induced by short days (SD) and regulated by the circadian clock. Compared to wild type (WT), overexpression of GmFULc in transgenic Arabidopsis caused significantly earlier flowering time, while ful mutants flowered later, and overexpression of GmFULc rescued the late-flowering phenotype of ful mutants. ChIP-seq of GmFULc binding sites identified potential direct targets, including TOPLESS (TPL), and it inhibited the transcriptional activity of TPL. In addition, the transcription levels of FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and LEAFY (LFY) in the downstream of TPL were increased in GmFULc- overexpressionArabidopsis, suggesting that the early flowering phenotype was associated with up-regulation of these genes. Our results suggested that GmFULc inhibited the transcriptional activity of TPL and induced expression of FT, SOC1 and LFY to promote flowering.


Sign in / Sign up

Export Citation Format

Share Document