scholarly journals Natural Resources Resistance to Tomato Spotted Wilt Virus (TSWV) in Tomato (Solanum lycopersicum)

2021 ◽  
Vol 22 (20) ◽  
pp. 10978
Author(s):  
Shiming Qi ◽  
Shijie Zhang ◽  
Md. Monirul Islam ◽  
Ahmed H. El-Sappah ◽  
Fei Zhang ◽  
...  

Tomato spotted wilt virus (TSWV) is one of the most destructive diseases affecting tomato (Solanum lycopersicum) cultivation and production worldwide. As defenses against TSWV, natural resistance genes have been identified in tomato, including Sw-1a, Sw-1b, sw-2, sw-3, sw-4, Sw-5, Sw-6, and Sw-7. However, only Sw-5 exhibits a high level of resistance to the TSWV. Thus, it has been cloned and widely used in the breeding of tomato with resistance to the disease. Due to the global spread of TSWV, resistance induced by Sw-5 decreases over time and can be overcome or broken by a high concentration of TSWV. How to utilize other resistance genes and identify novel resistance resources are key approaches for breeding tomato with resistance to TSWV. In this review, the characteristics of natural resistance genes, natural resistance resources, molecular markers for assisted selection, and methods for evaluating resistance to TSWV are summarized. The aim is to provide a theoretical basis for identifying, utilizing resistance genes, and developing tomato varieties that are resistant to TSWV.

2008 ◽  
Vol 98 (2) ◽  
pp. 196-204 ◽  
Author(s):  
B. Mandal ◽  
S. Mandal ◽  
A. S. Csinos ◽  
N. Martinez ◽  
A. K. Culbreath ◽  
...  

Tomato spotted wilt virus (TSWV) is an economically important virus of flue-cured tobacco. Activation of systemic acquired resistance (SAR) by acibenzolar-S-methyl (ASM) in flue-cured tobacco was studied under greenhouse conditions by challenge inoculation with a severe isolate of TSWV. ASM restricted virus replication and movement, and as a result reduced systemic infection. Activation of resistance was observed within 2 days after treatment with ASM and a high level of resistance was observed at 5 days onward. Expression of the pathogenesis-related (PR) protein gene, PR-3, and different classes of PR proteins such as PR-1, PR-3, and PR-5 were detected at 2 days post-ASM treatment which inversely correlated with the reduction in the number of local lesions caused by TSWV. Tobacco plants treated with increased quantities of ASM (0.25, 0.5, 1.0, 2.0, and 4.0 g a.i./7,000 plants) showed increased levels of SAR as indicated by the reduction of both local and systemic infections by TSWV. The highest level of resistance was at 4 g a.i., but this rate of ASM also caused phytotoxicity resulting in temporary foliar spotting and stunting of plants. An inverse correlation between the TSWV reduction and phytotoxicity was observed with the increase of ASM concentration. ASM at the rate of 1 to 2 g a.i./7,000 plants activated a high level of resistance and minimized the phytotoxicity. Use of gibberellic acid in combination with ASM reduced the stunting caused by ASM. Present findings together with previous field experiments demonstrate that ASM is a potential option for management of TSWV in flue-cured tobacco.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 660 ◽  
Author(s):  
Changjun Huang ◽  
Yong Liu ◽  
Haiqin Yu ◽  
Cheng Yuan ◽  
Jianmin Zeng ◽  
...  

Tomato spotted wilt virus (TSWV) is one of the most destructive viral pathogens of plants. Recently, a single dominant gene conferring complete resistance to TSWV (RTSW) was identified in Nicotina alata and introgressed into cultivated tobacco (N. tabacum). However, whether the TSWV carries an avirulence (Avr) factor directed against RTSW remains obscure. In the present study, we identified the non-structural protein (NSm), the movement protein of TSWV, which is an RTSW-specific Avr factor, by using two different transient expression systems. Using amino acid (aa) substitution mutants, we demonstrated the ability to induce RTSW-mediated hypersensitive response (HR) of NSm is independent of its movement function. Moreover, key substitutions (C118Y and T120N), a 21-aa viral effector epitope, and different truncated versions of NSm, which are responsible for the recognition of the Sw-5b resistance gene of tomato, were tested for their ability to trigger HR to TSWV in tobacco. Together, our results demonstrated that RTSW-mediated resistance is triggered by NSm in the same way as by Sw-5b, however, via different elicitor active sites. Finally, an Avr gene-based diagnostic approach was established and used to determine the presence and effectiveness of resistance genes in tobacco.


HortScience ◽  
2010 ◽  
Vol 45 (10) ◽  
pp. 1424-1428 ◽  
Author(s):  
Matthew D. Robbins ◽  
Mohammed A.T. Masud ◽  
Dilip R. Panthee ◽  
Randolph G. Gardner ◽  
David M. Francis ◽  
...  

Tomato spotted wilt virus (TSWV) and Phytophthora infestans (late blight) in tomato (Solanum lycopersicum) have a worldwide distribution and are known to cause substantial disease damage. Sw-5 (derived from S. peruvianum) and Ph-3 (derived from S. pimpinellifolium) are, respectively, TSWV and late blight resistance genes. These two genes are linked (within 5 cM on several maps) in repulsion phase near the telomere of the long arm on chromosome 9. The tomato lines NC592 (Ph-3) and NC946 (Sw-5) were crossed to develop an F2 population and subsequent inbred generations. Marker-assisted selection (MAS) using three polymerase chain reaction-based codominant markers (TG328, TG591, and SCAR421) was used in F2 progeny with the goal of selecting for homozygous coupling-phase recombinant lines. From 1152 F2 plants, 11 were identified with potential recombination events between Ph-3 and Sw-5; of those, three were male sterile (ms-10). F3 progeny were generated from the remaining eight F2 recombinants, and resistance to both pathogens, or Ph-3 and Sw-5 in coupling phase, was confirmed in three of those. Recombination was suppressed fivefold in our F2 population to 1.11 cM between genes when compared with published maps of the same region. However, MAS was an efficient tool for selecting the desirable recombination events for these two pathogen resistance genes.


Author(s):  
Julio Gabriel ◽  
Daniel Sanabria ◽  
Silene Veramendi ◽  
Giovanna Plata ◽  
Ada Angulo ◽  
...  

La presente investigación se realizó en el invernadero y laboratorio de la Fundación PROINPA en Cochabamba - Bolivia en el 2012. El objetivo fue evaluar la resistencia y suscep- tibilidad de plantas a los virus Tomato spotted wilt virus – TSWV, Tomato cholorotic spot virus – TCSV y Groundnut ringspot virus – GRSV en 10 híbridos de tomate mediante evaluación feno- típica y del patrón molecular (marcador SCAR Sw- 421), que distingue los homocigotos y hete- rocigotos resistentes del susceptible. Los resul- tados mostraron que el marcador SW-421 se co- localizó con el gen Sw-5 de resistencia a TSWV. Se observó la presencia de la banda de resistencia (R) para TSWV a 940 bp en las variedades PROINPA 2 (Aguaí) y PROINPA 9 (Bonita) en estado homocigoto dominante (Sw-5/Sw-5). Las variedades PROINPA 1 (Andinita), PROINPA 3 (Arami), PROINPA 4 (Yara), PROINPA 5 (Pintona), PROINPA 6 (Jasuka), y PROINPA 10 (Bola Pera), mostraron la banda resistencia (H) a TSWV a 900-940 bp en estado heterocigoto (Sw-5/Sw-5+). Solamente la variedad PROINPA 7 (Redonda), el padre 71 89S LACHING SW-5 y la variedad Shannon mostraron el gen de suscep- tibilidad (S) al TSWV a 900 bp en estado homo- cigoto recesivo (Sw-5+/Sw-5+). Los análisis de severidad y de DAS-ELISA fueron confirmados con el análisis molecular.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 320
Author(s):  
Alexander Nilon ◽  
Karl Robinson ◽  
Hanu R. Pappu ◽  
Neena Mitter

Tomato spotted wilt virus (TSWV) is the type member of the genus Orthotospovirus in the family Tospoviridae and order Bunyavirales. TSWV, transmitted by several species of thrips, causes significant disease losses to agronomic and horticultural crops worldwide, impacting both the yield and quality of the produce. Management strategies include growing virus-resistant cultivars, cultural practices, and managing thrips vectors through pesticide application. However, numerous studies have reported that TSWV isolates can overcome host-plant resistance, while thrips are developing resistance to pesticides that were once effective. RNA interference (RNAi) offers a means of host defence by using double-stranded (ds) RNA to initiate gene silencing against invading viruses. However, adoption of this approach requires production and use of transgenic plants and thus limits the practical application of RNAi against TSWV and other viruses. To fully utilize the potential of RNAi for virus management at the field level, new and novel approaches are needed. In this review, we summarize RNAi and highlight the potential of topical or exogenous application of RNAi triggers for managing TSWV and thrips vectors.


Nature ◽  
1964 ◽  
Vol 203 (4945) ◽  
pp. 671-672 ◽  
Author(s):  
RUPERT J. BEST ◽  
GERARD F. KATEKAR

Sign in / Sign up

Export Citation Format

Share Document