scholarly journals The Influence of Tea Tree Oil on Antifungal Activity and Pharmaceutical Characteristics of Pluronic®F-127 Gel Formulations with Ketoconazole

2021 ◽  
Vol 22 (21) ◽  
pp. 11326
Author(s):  
Magdalena Wróblewska ◽  
Emilia Szymańska ◽  
Katarzyna Winnicka

Fungal skin infections are currently a major clinical problem due to their increased occurrence and drug resistance. The treatment of fungal skin infections is based on monotherapy or polytherapy using the synergy of the therapeutic substances. Tea tree oil (TTO) may be a valuable addition to the traditional antifungal drugs due to its antifungal and anti-inflammatory activity. Ketoconazole (KTZ) is an imidazole antifungal agent commonly used as a treatment for dermatological fungal infections. The use of hydrogels and organogel-based formulations has been increasing for the past few years, due to the easy method of preparation and long-term stability of the product. Therefore, the purpose of this study was to design and characterize different types of Pluronic®F-127 gel formulations containing KTZ and TTO as local delivery systems that can be applied in cases of skin fungal infections. The influence of TTO addition on the textural, rheological, and bioadhesive properties of the designed formulations was examined. Moreover, the in vitro release of KTZ, its permeation through artificial skin, and antifungal activity by the agar diffusion method were performed. It was found that obtained gel formulations were non-Newtonian systems, showing a shear-thinning behaviour and thixotropic properties with adequate textural features such as hardness, compressibility, and adhesiveness. Furthermore, the designed preparations with TTO were characterized by beneficial bioadhesive properties. The presence of TTO improved the penetration and retention of KTZ through the artificial skin membrane and this effect was particularly visible in hydrogel formulation. The developed gels containing TTO can be considered as favourable formulations in terms of drug release and antifungal activity.

2020 ◽  
Vol 65 (10) ◽  
pp. 82-91
Author(s):  
Phuong Nguyen Anh ◽  
Mai Le Thi Tuyet ◽  
Trung Trieu Anh

Mucormycosis is an uncommon but life-threatening invasive fungal infection, mostly occurs in immunocompromised patients. Lacking the appropriate antifungal drugs is one of the reasons that lead to difficulties in the management of mucormycosis. Curcuma longa has been used traditionally and widely to treat various diseases, including fungal infections. In the search for novel antifungal compounds from natural resources, we evaluated the effect of rhizome crude extract of C. longa on Mucor circinelloides – a causal agent of mucormycosis. The results of screening, using broth dilution method and agar-well diffusion method, showed that the C. longa extract exhibited promising antifungal activity against the fungus M. circinelloides. In liquid medium, C. longa extract decreased the ability of spore germination and the speed of hyphae formation of M. circinelloides decreased by up to approximately 70% and 90%, respectively. Besides, in a solid medium, the crude extract presented similar activity with amphotericin B (400 μg\mL) in decreasing the growth of M. circinelloides by nearly 77%. Moreover, the extract of C. longa also likely to induce the yeast-like type of growth of the dimorphic M. circinelloides in the early stage. These results suggest the plant could be a potential source for further study on biochemical components and the mechanism of its antifungal activity.


2021 ◽  
Vol 5 (1) ◽  
pp. 26-33
Author(s):  
Dian Ardiana

Background: Skin disease due to microorganism infection are still widely found in community. The infections can be caused by bacteria, viruses, fungi, and parasite. Tea tree oil often used as a herbal medicine in the treatment of skin diseases due to microorganisms. This literature study is conducted to review the role of tea tree oil as an antimicrobial in skin infections. Method: Fifteen indexed journals published from 2015 to 2020 about tea tree oil and skin infections, were included. From 15 journals, 9 journals discuss antibacterial activity of tea tree oil, 2 journals discuss antiviral activity, 9 journals discuss antifungal activity, and 1 journal discusses antiparasitic activity. All journals state that tea tree oil has an antimicrobial effect on microorganisms that cause skin infections. Result: From 9 journals, it was found that A. baumanni, P. aeruginosa, and C. acnes were the most sensitive bacteria to tea tree oil in terms of MIC and S. epidermidis was the most sensitive bacteria, seen from their inhibition zone. Eight journals state variations with significant differences in the activity of tea tree oil as an anti-fungal. Tea tree oil has stronger antibacterial activity than antifungal activity. It also has antiviral activity against HSV and antiparasitic on S. scabiei. Conclusion: The conclusion of this study is that tea tree oil has antimicrobial activity against microorganisms that cause skin disease, including bacteria, viruses, fungi, and parasite.  


1998 ◽  
Vol 88 (10) ◽  
pp. 489-492 ◽  
Author(s):  
JM Concha ◽  
LS Moore ◽  
WJ Holloway

Tea-tree oil (oil of Melaleuca alternifolia) has recently received much attention as a natural remedy for bacterial and fungal infections of the skin and mucosa. As with most naturally occurring agents, claims of effectiveness have been only anecdotal; however, several published studies have recently demonstrated tea-tree oil's antibacterial activity. This study was conducted to determine the activity of tea-tree oil against 58 clinical isolates: Candida albicans (n = 10), Trichophyton rubrum (n = 8), Trichophyton mentagrophytes (n = 9), Trichophyton tonsurans (n = 10), Aspergillus niger (n = 9), Penicillium species (n = 9), Epidermophyton floccosum (n = 2), and Microsporum gypsum (n = 1). Tea-tree oil showed inhibitory activity against all isolates tested except one strain of E floccosum. These in vitro results suggest that tea-tree oil may be useful in the treatment of yeast and fungal mucosal and skin infections.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sushil Anand ◽  
Margaret Deighton ◽  
George Livanos ◽  
Edwin Chi Kyong Pang ◽  
Nitin Mantri

AbstractThere is an urgent need for new effective antifungal agents suitable for the treatment of superficial skin infections, since acquired resistance of fungi to currently available agents is increasing. The antifungal activity of mono-floral Agastache honey and commercially available honeys were tested against dermatophytes (T. mentagrophytes and T. rubrum) and C. albicans (ATCC 10231 and a clinical isolate) by agar well diffusion and micro-dilution (AWD and MD). In AWD and MD assays, Agastache honey was effective at 40% concentration against dermatophytes (zone diameter, 19.5–20 mm) and C. albicans with the same MIC and MFC values indicating fungicidal activity. Tea tree honey was effective at 80% concentration (zone diameter, 14 mm) against dermatophytes and at 40% concentration against T. mentagrophytes and C. albicans. Manuka was effective at 80% concentration only against T. mentagrophytes (zone diameter, 12 mm) and at 40% against T. rubrum and C. albicans with fungistatic activity. Similar to the AWD results, Jelly bush, Super Manuka, and Jarrah showed no activity against dermatophytes but showed some activity against C. albicans. Headspace volatiles of six honeys were isolated by SPME and identified by GC-MS. The characteristic chemical markers for each honey were as follows: Agastache- Phenol, 2,4-bis(1,1-dimethylethyl) and Estragole; Manuka and Tea-tree- Acetanisole and Methyl 3,5-dimethoxybenzoate; Jelly bush- Linalool and Nonanal; Super Manuka- Methyl 3,5-dimethoxybenzoate and Nonanal; Jarrah- Isophorone and Nonanoic acid. Overall, analysis of the bioactive compound content and antifungal activity of Agastache honey indicated possible use as an antifungal agent for management of superficial fungal infections.


2019 ◽  
Vol 15 (6) ◽  
pp. 648-658 ◽  
Author(s):  
Manzoor Ahmad Malik ◽  
Shabir Ahmad Lone ◽  
Parveez Gull ◽  
Ovas Ahmad Dar ◽  
Mohmmad Younus Wani ◽  
...  

Background: The increasing incidence of fungal infections, especially caused by Candida albicans, and their increasing drug resistance has drastically increased in recent years. Therefore, not only new drugs but also alternative treatment strategies are promptly required. Methods: We previously reported on the synergistic interaction of some azole and non-azole compounds with fluconazole for combination antifungal therapy. In this study, we synthesized some non-azole Schiff-base derivatives and evaluated their antifungal activity profile alone and in combination with the most commonly used antifungal drugs- fluconazole (FLC) and amphotericin B (AmB) against four drug susceptible, three FLC resistant and three AmB resistant clinically isolated Candida albicans strains. To further analyze the mechanism of antifungal action of these compounds, we quantified total sterol contents in FLC-susceptible and resistant C. albicans isolates. Results: A pyrimidine ring-containing derivative SB5 showed the most potent antifungal activity against all the tested strains. After combining these compounds with FLC and AmB, 76% combinations were either synergistic or additive while as the rest of the combinations were indifferent. Interestingly, none of the combinations was antagonistic, either with FLC or AmB. Results interpreted from fractional inhibitory concentration index (FICI) and isobolograms revealed 4-10-fold reduction in MIC values for synergistic combinations. These compounds also inhibit ergosterol biosynthesis in a concentration-dependent manner, supported by the results from docking studies. Conclusion: The results of the studies conducted advocate the potential of these compounds as new antifungal drugs. However, further studies are required to understand the other mechanisms and in vivo efficacy and toxicity of these compounds.


2007 ◽  
Vol 28 (4) ◽  
pp. 174 ◽  
Author(s):  
David Ellis ◽  
Tania Sorrell ◽  
Sharon Chen

The last two to three decades have seen a major increase in invasive fungal infections (IFIs), a small, but increasing proportion of which are caused by pathogens with partial or complete resistance to antifungal drugs. The increase in IFIs has largely been associated with the increase in immunocompromised and critically ill patients. Opportunistic infections with relatively drug-resistant environmental fungi account for much of the resistance. In addition, amongst the only fungal species to colonise humans, Candida, two species that are resistant (C. krusei) or relatively resistant (C. glabrata) to fluconazole have emerged. In part this is explained by the selection pressure exerted by widespread use of fluconazole. Together with the introduction of new antifungal drugs with selective and/or variable antifungal activity, these changes have stimulated interest in understanding mechanisms and origins of resistance, the identification of resistance in the laboratory and its relationship to clinical outcomes, and in surveillance of clinical isolates and populations at risk of IFIs.


2018 ◽  
Vol 5 (3) ◽  
pp. 171814 ◽  
Author(s):  
Chang Shu ◽  
Tengfei Li ◽  
Wen Yang ◽  
Duo Li ◽  
Shunli Ji ◽  
...  

The present work is focused on the design and development of novel amphotericin B (AmB)-conjugated biocompatible and biodegradable polypeptide hydrogels to improve the antifungal activity. Using three kinds of promoting self-assembly groups (2-naphthalene acetic acid (Nap), naproxen (Npx) and dexamethasone (Dex)) and polypeptide sequence (Phe-Phe-Asp-Lys-Tyr, FFDKY), we successfully synthesized the Nap-FFDK(AmB)Y gels, Npx-FFDK(AmB)Y gels and Dex-FFDK(AmB)Y gels. The AmB-conjugated hydrogelators are highly soluble in different aqueous solutions. The cryo-transmission electron microscopy and scanning electron microscopy micrographs of hydrogels afford nanofibres with a width of 20–50 nm. Powder X-ray diffraction analyses demonstrate that the crystalline structures of the AmB and Dex are changed into amorphous structures after the formation of hydrogels. Circular dichroism spectra of the solution of blank carriers and the corresponding drug deliveries further help elucidate the molecular arrangement in gel phase, indicating the existence of turn features. The in vitro drug releases suggest that the AmB-conjugated hydrogels are suitable as drug-controlled release vehicles for hydrophobic drugs. The antifungal effect of AmB-conjugated hydrogels significantly exhibits the antifungal activity against Candida albicans . The results of the present study indicated that the AmB-conjugated hydrogels are suitable carriers for poorly water soluble drugs and for enhancement of therapeutic efficacy of antifungal drugs.


2020 ◽  
Author(s):  
Angelo Frei ◽  
A. Paden King ◽  
Gabrielle J. Lowe ◽  
Amy K. Cain ◽  
Francesca L. Short ◽  
...  

Resistance to currently available antifungal drugs has quietly been on the rise but overshadowed by the alarming spread of antibacterial resistance. There is a striking lack of attention to the threat of drug resistant fungal infections, with only a handful of new drugs currently in development. Given that metal complexes have proven to be useful new chemotypes in the fight against diseases such as cancer, malaria, and bacterial infections, it stands to reason to explore their possible utility in treating fungal infections. Herein we report a series of cobalt(III) Schiff base complexes with broad spectrum antifungal activity. Some of these complexes (1-3) show minimum inhibitory concentrations (MIC) in the low micro- to nanomolar range against a series of Candida and Cryptococcus yeasts. Additionally, we demonstrate that these compounds show no cytotoxicity against both bacterial and human cells. Finally, we report first in vivo toxicity data on these compounds in Galleria mellonella, showing that doses as high as 266 mg/kg are tolerated without adverse effects, paving the way for further in vivo studies of these complexes. <br>


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chido Bvumbi ◽  
Godloves Fru Chi ◽  
Marc Y. Stevens ◽  
Molly Mombeshora ◽  
Stanley Mukanganyama

Candida albicans and Candida tropicalis are the leading causes of human fungal infections worldwide. There is an increase in resistance of Candida pathogens to existing antifungal drugs leading to a need to find new sources of antifungal agents. Tormentic acid has been isolated from different plants including Callistemon citrinus and has been found to possess antimicrobial properties, including antifungal activity. The study aimed to determine the effects of tormentic and extracts from C. citrinus on C. albicans and C. tropicalis and a possible mode of action. The extracts and tormentic acid were screened for antifungal activity using the broth microdilution method. The growth of both species was inhibited by the extracts, and C. albicans was more susceptible to the extract compared to C. tropicalis. The growth of C. albicans was inhibited by 80% at 100 μg/ml of both the DCM: methanol extract and the ethanol: water extract. Tormentic acid reduced the growth of C. albicans by 72% at 100 μg/ml. The effects of the extracts and tormentic acid on ergosterol content in C. albicans were determined using a UV/Vis scanning spectrophotometer. At concentrations of tormentic acid of 25 μg/ml, 50 μg/ml, 100 μg/ml, and 200 μg/ml, the content of ergosterol was decreased by 22%, 36%, 48%, and 78%, respectively. Similarly, the DCM: methanol extract at 100 μg/ml and 200 μg/ml decreased the content by 78% and 88%, respectively. A dose-dependent decrease in ergosterol content was observed in cells exposed to miconazole with a 25 μg/ml concentration causing a 100% decrease in ergosterol content. Therefore, tormentic acid inhibits the synthesis of ergosterol in C. albicans. Modifications of the structure of tormentic acid to increase its antifungal potency may be explored in further studies.


Author(s):  
Akansha Suman ◽  
Sapna Chauhan ◽  
Suman Lata ◽  
Rajeev K. Sharma

Background: To evaluate the in-vitro antifungal activity of various essential plant oils against yeast species.Methods: The present study was a prospective study conducted in Department of Microbiology along with Department of Pharmacology at Tertiary care teaching hospital. Various clinical samples from ICU patients were inoculated on Sabourauds Dextrose Agar (SDA) in accordance with the standard methods. Yeast isolates were recovered and identified as per standard recommended procedure. The antifungal activity of plant oils against these isolated yeasts was determined using disc diffusion method. The results were interpreted as <9mm-inactive, 9-12mm-partially active, 13-18mm-very active. Fluconazole and Itraconazole were taken as control drugs.Results: The various yeast isolated were C. albicans, C. tropicals, C. krusei, C. glabrata, C. gulliermondi, C. keyfr, Cryptococcus and Tricosporon. Among essential plant oils, Cinnamon oil and clove oil showed high activity against all isolated yeast species. Olive oil showed least antifungal activity. Fluconazole was resistant in all yeast isolates, while Itraconazole was sensitive to all yeast isolates. Sensitivity of cinnamon and clove oil was statistically significant than Itraconazole.Conclusions: To conclude present study shows the potential of essential plant oils as newer therapeutic alternatives to antifungal drugs. These may be used in combination with antifungal agents to overcome drug resistance, adverse effects and in shortening the long-term treatment with antifungal drugs. Thus, these essential plant oils can be used in future as antifungal agents in azoles resistant strains.


Sign in / Sign up

Export Citation Format

Share Document