scholarly journals Short- and Long-Term Implications of Human Milk Microbiota on Maternal and Child Health

2021 ◽  
Vol 22 (21) ◽  
pp. 11866
Author(s):  
María García-Ricobaraza ◽  
José Antonio García-Santos ◽  
Mireia Escudero-Marín ◽  
Estefanía Diéguez ◽  
Tomás Cerdó ◽  
...  

Human milk (HM) is considered the most complete food for infants as its nutritional composition is specifically designed to meet infant nutritional requirements during early life. HM also provides numerous biologically active components, such as polyunsaturated fatty acids, milk fat globules, IgA, gangliosides or polyamines, among others; in addition, HM has a “bifidogenic effect”, a prebiotic effect, as a result of the low concentration of proteins and phosphates, as well as the presence of lactoferrin, lactose, nucleotides and oligosaccharides. Recently, has been a growing interest in HM as a potential source of probiotics and commensal bacteria to the infant gut, which might, in turn, influence both the gut colonization and maturation of infant immune system. Our review aims to address practical approaches to the detection of microbial communities in human breast milk samples, delving into their origin, composition and functions. Furthermore, we will summarize the current knowledge of how HM microbiota dysbiosis acts as a short- and long-term predictor of maternal and infant health. Finally, we also provide a critical view of the role of breast milk-related bacteria as a novel probiotic strategy in the prevention and treatment of maternal and offspring diseases.

Children ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 863
Author(s):  
Giulia Vizzari ◽  
Daniela Morniroli ◽  
Federica Ceroni ◽  
Elvira Verduci ◽  
Alessandra Consales ◽  
...  

Human breast milk not only has nutritional properties but also holds a functional role. It contains various bioactive factors (lactoferrin, lysozyme, leukocytes, immunoglobulins, cytokines, hormones, human milk oligosaccharides, microbiome, microRNAs and stem cells) shown to contribute to several short- and long-term health outcomes. Some of these factors appear to be involved in the infant’s neuro-cognitive development, anti-oncogenic processes, cellular communication and differentiation. Furthermore, breast milk is increasingly recognized to have dynamic characteristics and to play a fundamental role in the cross-talking mother-neonate. This narrative review aims to provide a summary and an update on these bioactive substances, exploring their functions mainly on immunomodulation, microbiome and virome development. Although the knowledge about breast milk potentiality has significantly improved, leading to discovering unexpected functions, the exact mechanisms with which breast milk exercises its bioactivity have not been completely clarified. This can represent a fertile ground for exploring and understanding the complexity behind these functional elements to develop new therapeutic strategies.


1999 ◽  
Vol 8 (2) ◽  
pp. 69-75 ◽  
Author(s):  
Michael Oladipo Ogundele

Several natural components abundant in the fluid phase of human breast-milk have been shown to be inhibitors of complement activationin vitro, particularly the classical pathway. These include lysozyme, lactoferrin, lactalbumin alpha and other ligand chelators, complement regulator proteins and other specific soluble inhibitors of complement activation. Their physiological significance probably resides in their ability to restrictin vivocomplement activation to specialized (compartmentalized) sites on the cellular membrane structures in human milk, represented by the abundant surface area of the milk fat globule membranes. This would serve to prevent inflammatory-induced tissue damage of the delicate immature gastrointestinal tract of the newborn as well as the mammary gland itself. A number of recognized and potential inhibitors of complement activity in human milk and other biological fluids are hereby reviewed, with a proposal of their physiological significance.Abbreviations: HBM, human breast-milk; APC, alternative complement activation pathway; MAC, membrane attack complex (C5b-9); MFGM, milk fat globule membrane


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4346
Author(s):  
Irma Castro ◽  
Rebeca Arroyo ◽  
Marina Aparicio ◽  
María Ángeles Martínez ◽  
Joaquim Rovira ◽  
...  

Breastfeeding is the best way to feed an infant, although it can also be a source of abiotic contaminants such as heavy metals or bisphenol A (BPA). The early life exposure to these compounds can lead to serious toxic effects in both the short and long-term. These substances can reach breast milk through the mother’s habits, diet being one of the main routes of exposure. The aim of the present work was to analyse possible associations between the dietary habits of women and the content of major trace elements, BPA, fatty acids and lipids, and the microbiological and immunological profiles of human milk. Possible associations between major trace elements and BPA and the lipid, microbiological and immunological profiles were also analysed. The results of this study support that the microbiological composition of human milk is associated with the dietary habits of the women, and that the consumption of canned drinks is related to the presence of BPA in human milk. Furthermore, some relationships were found between the amount of major trace elements and the microbiological and immunological profile of the milk samples. Finally, the presence of BPA was associated with changes in the immunological profile of human milk.


2017 ◽  
Vol 70 (Suppl. 2) ◽  
pp. 26-36 ◽  
Author(s):  
Wendy H. Oddy

The worldwide prevalence of childhood asthma has been increasing considerably, and the protection afforded by breastfeeding in its development has been the subject of controversy for more than 80 years. Previous systematic reviews have generally found a protective effect of breastfeeding on allergic outcomes, although many studies have methodological limitations. Although breastfeeding is protective against lower respiratory tract infection during infancy, such protection has not been demonstrated for asthma in all studies. Breastfeeding has health benefits for the mother and child. Exclusive breastfeeding for the first 6 months of an infant's life, with continued breastfeeding for up to 2 years or longer, is recognized as the “gold” standard for infant feeding because human milk is uniquely suited to the human infant, and its nutritional content and bioactivity promote a healthy development. There is increasing concern that the practice of delaying complementary foods until 6 months may exacerbate the risk of allergic disease. Breast milk contains immunological components that protect against infections and allergic disease in infancy. The composition of human breast milk is complex, containing factors that interact with the infant immune system and intestinal milieu including allergens, cytokines, immunoglobulins, polyunsaturated fatty acids, and chemokines. Transforming growth factor β is a cytokine in human milk involved in maintaining intestinal homeostasis, inflammation regulation, and oral tolerance development. Modern day society, with increased standards of hygiene, has changed the gut flora of Western infants, potentially impacting the risk of developing immune-mediated diseases including allergic disease and asthma. Microbial diversity is intrinsic to healthy immune maturation and function. Compared to breastfed infants, formula-fed infants had lower bacterial diversity and an altered intestinal microbiota in the first few weeks of life associated with an increased risk of eczema and asthma. Favorable gut colonization through continued breastfeeding may promote tolerance as well as protection when complementary feeding is initiated.


2021 ◽  
Vol 14 (02) ◽  
pp. e61-e70
Author(s):  
Mário Cícero Falcão ◽  
Patrícia Zamberlan

AbstractThe ideal feeding for infants is the breast milk because it has a balanced nutritional composition, which includes all essential nutrients, in addition to many bioactive factors that contribute to the growth and development of the child, as well as to the maturation of the gastrointestinal tract. Among them are immunological factors, antimicrobials and anti-inflammatory components, digestive enzymes, various types of hormones, and growth factors. If human milk is not available, there is an indication of infant formulas that should follow the recommendations of the Codex Alimentarius of the Food and Agriculture Organization/World Health Organization (WHO). In a century of history, infant formulas have gone from a simple combination of cow milk (evaporated or condensed) and water to highly sophisticated products, elaborated by very refined technological processes to produce lactose-free, antiregurgitation, based on soy protein, hydrolyzed protein in various grades, and only amino acids formulas. The major milestones in the modification of infant formulas were the incorporation of nutrients/ingredients such as: iron, nucleotides, alpha lactalbumin, long-chain polyunsaturated fatty acids, prebiotics, probiotics, postbiotics, oligosaccharides similar to human milk, lactoferrin, and milk fat globule membrane. Many of these ingredients have shown benefits on the immunological system. Despite the technological advances, breast milk remains irreplaceable, being the gold standard for infant feeding.


2021 ◽  
Author(s):  
Fatima Chegdani ◽  
Badreddine Nouadi ◽  
Faiza Bennis

Nutrition is an essential condition for physical, mental, and psycho-emotional growth for both children and adults. It is a major determinant of health and a key factor for the development of a country. Breastfeeding is a natural biological process, essential for the development of the life of the newborn at least during the first six months by ensuring a nutritional contribution adapted to the needs of the latter. Thus, breast milk is the physiological and natural food best suited to the nutrition of the newborn. It contains several various components, which are biologically optimized for the infant. Cells are not a negligible component of breast milk. Breast milk is also a continuous source of commensal and beneficial bacteria, including lactic acid bacteria and bifidobacteria. It plays an important role in the initiation, development, and composition of the newborn’s gut microbiota, thanks to its pre-and probiotic components. Current knowledge highlights the interdependent links between the components of breast milk, the ontogeny of intestinal functions, the development of the mucus intestinal immune system, colonization by the intestinal microbiota, and protection against pathogens. The quality of these interactions influences the health of the newborn in the short and long term.


2021 ◽  
Vol 11 (6) ◽  
pp. 483
Author(s):  
Marwa Saadaoui ◽  
Manoj Kumar ◽  
Souhaila Al Khodor

The COVID-19 pandemic is a worldwide, critical public health challenge and is considered one of the most communicable diseases that the world had faced so far. Response and symptoms associated with COVID-19 vary between the different cases recorded, but it is amply described that symptoms become more aggressive in subjects with a weaker immune system. This includes older subjects, patients with chronic diseases, patients with immunosuppression treatment, and pregnant women. Pregnant women are receiving more attention not only because of their altered physiological and immunological function but also for the potential risk of viral vertical transmission to the fetus or infant. However, very limited data about the impact of maternal infection during pregnancy, such as the possibility of vertical transmission in utero, during birth, or via breastfeeding, is available. Moreover, the impact of infection on the newborn in the short and long term remains poorly understood. Therefore, it is vital to collect and analyze data from pregnant women infected with COVID-19 to understand the viral pathophysiology during pregnancy and its effects on the offspring. In this article, we review the current knowledge about pre-and post-natal COVID-19 infection, and we discuss whether vertical transmission takes place in pregnant women infected with the virus and what are the current recommendations that pregnant women should follow in order to be protected from the virus.


Author(s):  
Winok Lapidaire ◽  
Alan Lucas ◽  
Jonathan D. Clayden ◽  
Chris Clark ◽  
Mary S. Fewtrell

Abstract Background Breast milk has been associated with lower risk of infection and necrotising enterocolitis (NEC) and improved long-term cognitive outcomes in preterm infants but, if unsupplemented, does not meet the nutritional requirements of preterm infants. Methods Preterm infants were randomised to receive a high nutrient intervention diet: preterm formula (PTF) or the standard diet: term formula (TF) or banked donor breast milk (BBM), either as their sole diet or as supplement to maternal breast milk (MBM). IQ tests were performed at ages 7, 15, 20, and 30 years. Results An increase in MBM and BBM intake was associated with a lower chance of neonatal infection/NEC. Neonatal infection/NEC was associated with lower Full Scale IQ (FSIQ) and Performance IQ (PIQ) score at ages 7 and 30 years. The relationship between higher intake of MBM and PIQ at age 7 years was partly mediated by neonatal infection/NEC. The intervention diet was associated with higher Verbal IQ (VIQ) scores compared to the standard diet. There was no evidence that these effects changed from childhood through to adulthood. Conclusions Neonatal diet is an important modifiable factor that can affect long-term cognitive outcome through a ‘human milk’ factor, protecting against infection/NEC, and a ‘nutrient content’ factor. Impact This is the first study to demonstrate the effects of neonatal infection/necrotising enterocolitis (NEC) on IQ in the same cohort in childhood and adulthood. Diet can be a key factor in long-term cognitive outcome in people born preterm by preventing neonatal infection/NEC and providing adequate nutrients. Human milk, whether MBM or BBM, is associated with a reduced risk of infection/NEC. A higher nutrient diet is associated with better cognitive outcome in childhood. Performance IQ is particularly vulnerable to the effects of infection/NEC and verbal IQ to the quantity of (macro)nutrients in the diet.


PEDIATRICS ◽  
1991 ◽  
Vol 87 (4) ◽  
pp. 439-444
Author(s):  
Patrick S. Clyne ◽  
Anthony Kulczycki

Previous studies have suggested that an unidentified cow's milk protein, other than β-lactoglobulin and casein, might play a pathogenetic role in infant colic. Therefore, a radioimmunoassay was used to analyze human breast milk and infant formula samples for the presence of bovine IgG. Milk samples from 88 of the 97 mothers tested contained greater than 0.1 µg/mL of bovine IgG. In a study group of 59 mothers with infants in the colic-prone 2- to 17-week age group, the 29 mothers of colicky infants had higher levels of bovine IgG in their breast milk (median 0.42 µg/mL) than the 30 mothers of noncolicky infants (median 0.32 µg/mL) (P < .02). The highest concentrations of bovine IgG observed in human milk were 8.5 and 8.2 µg/mL. Most cow's milk-based infant formulas contained 0.6 to 6.4 µg/mL of bovine IgG, a concentration comparable with levels found in many human milk samples. The results suggest that appreciable quantities of bovine IgG are commonly present in human milk, that significantly higher levels are present in milk from mothers of colicky infants, and that bovine IgG may possibly be involved in the pathogenesis of infant colic.


Sign in / Sign up

Export Citation Format

Share Document