scholarly journals Dietary Habits and Relationship with the Presence of Main and Trace Elements, Bisphenol A, Tetrabromobisphenol A, and the Lipid, Microbiological and Immunological Profiles of Breast Milk

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4346
Author(s):  
Irma Castro ◽  
Rebeca Arroyo ◽  
Marina Aparicio ◽  
María Ángeles Martínez ◽  
Joaquim Rovira ◽  
...  

Breastfeeding is the best way to feed an infant, although it can also be a source of abiotic contaminants such as heavy metals or bisphenol A (BPA). The early life exposure to these compounds can lead to serious toxic effects in both the short and long-term. These substances can reach breast milk through the mother’s habits, diet being one of the main routes of exposure. The aim of the present work was to analyse possible associations between the dietary habits of women and the content of major trace elements, BPA, fatty acids and lipids, and the microbiological and immunological profiles of human milk. Possible associations between major trace elements and BPA and the lipid, microbiological and immunological profiles were also analysed. The results of this study support that the microbiological composition of human milk is associated with the dietary habits of the women, and that the consumption of canned drinks is related to the presence of BPA in human milk. Furthermore, some relationships were found between the amount of major trace elements and the microbiological and immunological profile of the milk samples. Finally, the presence of BPA was associated with changes in the immunological profile of human milk.

2021 ◽  
Vol 22 (21) ◽  
pp. 11866
Author(s):  
María García-Ricobaraza ◽  
José Antonio García-Santos ◽  
Mireia Escudero-Marín ◽  
Estefanía Diéguez ◽  
Tomás Cerdó ◽  
...  

Human milk (HM) is considered the most complete food for infants as its nutritional composition is specifically designed to meet infant nutritional requirements during early life. HM also provides numerous biologically active components, such as polyunsaturated fatty acids, milk fat globules, IgA, gangliosides or polyamines, among others; in addition, HM has a “bifidogenic effect”, a prebiotic effect, as a result of the low concentration of proteins and phosphates, as well as the presence of lactoferrin, lactose, nucleotides and oligosaccharides. Recently, has been a growing interest in HM as a potential source of probiotics and commensal bacteria to the infant gut, which might, in turn, influence both the gut colonization and maturation of infant immune system. Our review aims to address practical approaches to the detection of microbial communities in human breast milk samples, delving into their origin, composition and functions. Furthermore, we will summarize the current knowledge of how HM microbiota dysbiosis acts as a short- and long-term predictor of maternal and infant health. Finally, we also provide a critical view of the role of breast milk-related bacteria as a novel probiotic strategy in the prevention and treatment of maternal and offspring diseases.


Children ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 863
Author(s):  
Giulia Vizzari ◽  
Daniela Morniroli ◽  
Federica Ceroni ◽  
Elvira Verduci ◽  
Alessandra Consales ◽  
...  

Human breast milk not only has nutritional properties but also holds a functional role. It contains various bioactive factors (lactoferrin, lysozyme, leukocytes, immunoglobulins, cytokines, hormones, human milk oligosaccharides, microbiome, microRNAs and stem cells) shown to contribute to several short- and long-term health outcomes. Some of these factors appear to be involved in the infant’s neuro-cognitive development, anti-oncogenic processes, cellular communication and differentiation. Furthermore, breast milk is increasingly recognized to have dynamic characteristics and to play a fundamental role in the cross-talking mother-neonate. This narrative review aims to provide a summary and an update on these bioactive substances, exploring their functions mainly on immunomodulation, microbiome and virome development. Although the knowledge about breast milk potentiality has significantly improved, leading to discovering unexpected functions, the exact mechanisms with which breast milk exercises its bioactivity have not been completely clarified. This can represent a fertile ground for exploring and understanding the complexity behind these functional elements to develop new therapeutic strategies.


Author(s):  
Winok Lapidaire ◽  
Alan Lucas ◽  
Jonathan D. Clayden ◽  
Chris Clark ◽  
Mary S. Fewtrell

Abstract Background Breast milk has been associated with lower risk of infection and necrotising enterocolitis (NEC) and improved long-term cognitive outcomes in preterm infants but, if unsupplemented, does not meet the nutritional requirements of preterm infants. Methods Preterm infants were randomised to receive a high nutrient intervention diet: preterm formula (PTF) or the standard diet: term formula (TF) or banked donor breast milk (BBM), either as their sole diet or as supplement to maternal breast milk (MBM). IQ tests were performed at ages 7, 15, 20, and 30 years. Results An increase in MBM and BBM intake was associated with a lower chance of neonatal infection/NEC. Neonatal infection/NEC was associated with lower Full Scale IQ (FSIQ) and Performance IQ (PIQ) score at ages 7 and 30 years. The relationship between higher intake of MBM and PIQ at age 7 years was partly mediated by neonatal infection/NEC. The intervention diet was associated with higher Verbal IQ (VIQ) scores compared to the standard diet. There was no evidence that these effects changed from childhood through to adulthood. Conclusions Neonatal diet is an important modifiable factor that can affect long-term cognitive outcome through a ‘human milk’ factor, protecting against infection/NEC, and a ‘nutrient content’ factor. Impact This is the first study to demonstrate the effects of neonatal infection/necrotising enterocolitis (NEC) on IQ in the same cohort in childhood and adulthood. Diet can be a key factor in long-term cognitive outcome in people born preterm by preventing neonatal infection/NEC and providing adequate nutrients. Human milk, whether MBM or BBM, is associated with a reduced risk of infection/NEC. A higher nutrient diet is associated with better cognitive outcome in childhood. Performance IQ is particularly vulnerable to the effects of infection/NEC and verbal IQ to the quantity of (macro)nutrients in the diet.


1998 ◽  
Vol 80 (S1) ◽  
pp. S5-S45 ◽  
Author(s):  
B. Koletzko ◽  
P. J. Aggett ◽  
J. G. Bindels ◽  
P. Bung ◽  
P. Ferré ◽  
...  

AbstractFew other aspects of food supply and metabolism are of greater biological importance than the feeding of mothers during pregnancy and lactation, and of their infants and young children. Nutritional factors during early development not only have short-term effects on growth, body composition and body functions but also exert long-term effects on health, disease and mortality risks in adulthood, as well as development of neural functions and behaviour, a phenomenon called ‘metabolic programming’. The interaction of nutrients and gene expression may form the basis of many of these programming effects and needs to be investigated in more detail. The relation between availability of food ingredients and cell and tissue differentiation and its possible uses for promoting health and development requires further exploration. The course of pregnancy, childbirth and lactation as well as human milk composition and the short- and long-term outcome of the child are influenced by the intake of foods and particularly micronutrients, e.g. polyunsaturated fatty acids, Fe, Zn and I. Folic acid supplementation from before conception through the first weeks of pregnancy can markedly reduce the occurrence of severe embryonic malformations; other potential benefits of modulating nutrient supply on maternal and child health should be further evaluated. The evaluation of dietary effects on child growth requires epidemiological and field studies as well as evaluation of specific cell and tissue growth. Novel substrates, growth factors and conditionally essential nutrients (e.g. growth factors, amino acids, polyunsaturated fatty acids) may be potentially useful as ingredients in functional foods and need to be assessed carefully. Intestinal growth, maturation, and adaptation as well as long-term function may be influenced by food ingredients such as oligosaccharides, gangliosides, high-molecular-mass glycoproteins, bile salt-activated lipase, pre- and probiotics. There are indications for some beneficial effects of functional foods on the developing immune response, for example induced by antioxidant vitamins, trace elements, fatty acids, arginine, nucleotides, and altered antigen contents in infant foods. Peak bone mass at the end of adolescence can be increased by dietary means, which is expected to be of long-term importance for the prevention of osteoporosis at older ages. Future studies should be directed to the combined effects of Ca and other constituents of growing bone, such as P, Mg and Zn, as well as vitamins D and K, and the trace elements F and B. Pregnancy and the first postnatal months are critical time periods for the growth and development of the human nervous system, processes for which adequate substrate supplies are essential. Early diet seems to have long-term effects on sensory and cognitive abilities as well as behaviour. The potential beneficial effects of a balanced supply of nutrients such as I, Fe, Zn and polyunsaturated fatty acids should be further evaluated. Possible long-term effects of early exposure to tastes and flavours on later food choice preferences may have a major impact on public health and need to be further elucidated. The use of biotechnology and recombinant techniques may offer the opportunity to include various bioactive substances in special dietary products, such as human milk proteins, peptides, growth factors, which may have beneficial physiological effects, particularly in infancy and early childhood.


2003 ◽  
Vol 6 (3) ◽  
pp. 241-247 ◽  
Author(s):  
G Rocquelin ◽  
S Tapsoba ◽  
J Kiffer ◽  
S Eymard-Duvernay

AbstractObjective:Objective: To estimate the role of human milkn-6 andn-3 polyunsaturated fatty acids (PUFA) in term infant growth in two African urban populations.Design:Observational study. Weight gains at 5 months of age and dietary habits were compared between Congolese infants (n=102) and Burkinabè infants (n=101). Socio-economic status and anthropometry of the mothers were also recorded.Setting:One suburban district in Brazzaville (capital of The Congo) and one in Ouagadougou (capital of Burkina Faso).Subjects:Two random samples of nursing mothers and their 5-month-old infants.Results:All infants were born at term and there was no difference in birth weights. At 5 months of age, infants in Ouagadougou were thinner but not shorter than their counterparts in Brazzaville (average weight gain (standard deviation): 614 (168) g month-1vs. 720 (176) g month-1;P>0.0001). Drastic differences were found in infant diets with regard to extra fluid intake andn-6 andn-3 PUFA concentrations in breast milk. In Ouagadougou, all infants were given fluids other than milk from birth. Breast milk had highly unbalanced 18:2n-6/18:3n-3 andn-6/n-3 long-chain PUFA ratios (53:1 and 5:1, respectively). In Brazzaville, half of the infants received fluids other than milk, and breast milk showed balanced 18:2n-6/18:3n-3 andn-6/n-3 long-chain PUFA ratios (12:1 and 1:1, respectively). A non-linear relationship between 18:2n-6/18:3n-3 ratio and growth was established in Brazzaville (P=0.0027). The 18:2n-6/18:3n-3 ratio adjusted with covariates had an even more significant effect on weight gain (P=0.0011). Applying the same model in Ouagadougou did not show such a relation.Conclusion:Data strongly suggest that a balanced ratio of 18:2n-6/18:3n-3 (between 5:1 and 15:1) in breast milk leads to higher weight gain of infants during the first 5 months of life.


Chemosphere ◽  
2005 ◽  
Vol 61 (2) ◽  
pp. 238-247 ◽  
Author(s):  
Michalis Leotsinidis ◽  
Athanasios Alexopoulos ◽  
Evangelia Kostopoulou-Farri

2017 ◽  
Vol 8 (4) ◽  
pp. 153-157
Author(s):  
Sara Copeland

The beneficial flora inhabiting the intestinal tract of an infant is extremely important for health, both in the short and long term. The establishment and further development of a healthy gut microbiome is a complicated interaction of factors in the infant. There are many elements that influence the development of the gut flora that extend beyond birth method and type of feeding. Maternal antibiotic use during pregnancy and during delivery is a common practice and can decrease the diversity of friendly biota in the mother and therefore decrease the amount and variety introduced to the infant. Antibiotic use in the mother while breastfeeding also has implications for health and diversity of the infant’s gut bacteria because varying amounts of antibiotic medications transfer into breast milk. The use of probiotics is a common complimentary therapy that is used for a wide variety of reasons and is frequently used during pregnancy and lactation.


2014 ◽  
Vol 6 (1) ◽  
pp. 217-247 ◽  
Author(s):  
Janet Currie ◽  
Joshua Graff Zivin ◽  
Jamie Mullins ◽  
Matthew Neidell

2013 ◽  
Author(s):  
Janet Currie ◽  
Joshua S. Graff Zivin ◽  
Jamie Mullins ◽  
Matthew Neidell

Sign in / Sign up

Export Citation Format

Share Document