scholarly journals Chemoattraction of Neoplastic Glial Cells with CXCL10, CCL2 and CCL11 as a Paradigm for a Promising Therapeutic Approach for Primary Brain Tumors

2021 ◽  
Vol 22 (22) ◽  
pp. 12150
Author(s):  
Laurence Déry ◽  
Gabriel Charest ◽  
Brigitte Guérin ◽  
Mohsen Akbari ◽  
David Fortin

Chemoattraction is a normal and essential process, but it can also be involved in tumorigenesis. This phenomenon plays a key role in glioblastoma (GBM). The GBM tumor cells are extremely difficult to eradicate, due to their strong capacity to migrate into the brain parenchyma. Consequently, a complete resection of the tumor is rarely a possibility, and recurrence is inevitable. To overcome this problem, we proposed to exploit this behavior by using three chemoattractants: CXCL10, CCL2 and CCL11, released by a biodegradable hydrogel (GlioGel) to produce a migration of tumor cells toward a therapeutic trap. To investigate this hypothesis, the agarose drop assay was used to test the chemoattraction capacity of these three chemokines on murine F98 and human U87MG cell lines. We then studied the potency of this approach in vivo in the well-established syngeneic F98-Fischer glioma-bearing rat model using GlioGel containing different mixtures of the chemoattractants. In vitro assays resulted in an invasive cell rate 2-fold higher when chemokines were present in the environment. In vivo experiments demonstrated the capacity of these specific chemoattractants to strongly attract neoplastic glioblastoma cells. The use of this strong locomotion ability to our end is a promising avenue in the establishment of a new therapeutic approach in the treatment of primary brain tumors.

2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nan Jiang ◽  
Devendra H. Dusane ◽  
Jacob R. Brooks ◽  
Craig P. Delury ◽  
Sean S. Aiken ◽  
...  

AbstractThis study investigated the efficacy of a biphasic synthetic β-tricalcium phosphate/calcium sulfate (β-TCP/CS) bone graft substitute for compatibility with vancomycin (V) in combination with tobramycin (T) or gentamicin (G) evidenced by the duration of potency and the prevention and killing efficacies of P. aeruginosa (PAO1) and S. aureus (SAP231) biofilms in in vitro assays. Antibiotic loaded β-TCP/CS beads were compared with antibiotic loaded beads formed from a well characterized synthetic calcium sulfate (CS) bone void filler. β-TCP/CS antibiotic loaded showed antimicrobial potency against PAO1 in a repeated Kirby-Bauer like zone of inhibition assay for 6 days compared to 8 days for CS. However, both bead types showed potency against SAP231 for 40 days. Both formulations loaded with V + T completely prevented biofilm formation (CFU below detection limits) for the 3 days of the experiment with daily fresh inoculum challenges (P < 0.001). In addition, both antibiotic loaded materials and antibiotic combinations significantly reduced the bioburden of pre-grown biofilms by between 3 and 5 logs (P < 0.001) with V + G performing slightly better against PAO1 than V + T. Our data, combined with previous data on osteogenesis suggest that antibiotic loaded β-TCP/CS may have potential to stimulate osteogenesis through acting as a scaffold as well as simultaneously protecting against biofilm infection. Future in vivo experiments and clinical investigations are warranted to more comprehensively evaluate the use of β-TCP/CS in the management of orthopaedic infections.


2021 ◽  
Author(s):  
Haimin Song ◽  
Runwei Yang ◽  
Runbin Lai ◽  
Kaishu Li ◽  
Bowen Ni ◽  
...  

Glioblastoma multiforme (GBM) is the most malignant adult brain tumor. The current adjuvant therapies for GBM are disappointing, which are based on cytotoxicity strategy. Thus, other ways should be explored to improve the curative effect. According to the strong invasive ability of GBM cells, we assume a new treatment strategy for GBM by developing a new cell trap device (CTD) with some kind of "attractive" medium loaded in it to attract and capture the tumor cells. The in vitro experiment showed that Hepatocyte Growth Factor(HGF)presented stronger chemotaxis on C6 and U87 cell line than the Epidermal Growth Factor (EGF) and Fibroblast Growth Factor (FGF). A simple in vitro CTD loaded with HGF was made and in vivo experiments results showed that HGF successfully attracted tumor cells from tumor bed in situ into the CTD. This study proposes the new strategy for GBM treatment of "attract and trap" tumor cells is proved to be feasible.


1987 ◽  
Vol 73 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Monica Rodolfo ◽  
Giorgio Parmiani

The antigenic profile of C-26 and C-51 BALB/c colonic adenocarcinomas was examined by in vivo and in vitro assays. Mice immunized with irradiated C-26 or C-51 tumor cells from freshly excised tumor nodules or from in vitro-growing cell lines were able to reject a challenge of both tumors. Spleen lymphocytes of immune but not of normal mice were effective in cross-inhibiting tumor growth in vivo in a Winn assay. Tissue-associated antigens common to C-26 and C-51 and to their metastases but not to other syngeneic neoplasms were detected in vitro by cytotoxic T lymphocytes obtained after 5 days of a secondary culture of immune lymphocytes and irradiated tumor cells. Activated lymphocytes were obtained by exposure of spleen cells to interleukin 2 or by allostimulation. Such lymphocytes, although cytotoxic in vitro on C-26 and C-51 carcinomas, were unable to significantly reduce in vivo tumor growth in the Winn assay.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 210-210 ◽  
Author(s):  
Chen Xilin ◽  
Jianfeng Han ◽  
Chu Jianhong ◽  
Walter Meisen ◽  
Zhang Jianying ◽  
...  

Abstract Natural killer (NK) cells are innate lymphocytes that can rapidly eradicate tumor cells, especially those lacking MHC Class I molecules. NK cells can also rapidly eradicate herpes virus-infected cells. We designed an oncolytic herpes virus (oHSV) to selectively infect, replicate within, and lyse glioblastoma (GBM), a devastating brain tumor with a median survival of only 15 months following diagnosis. We have shown that the rapid influx of NK cells limits oHSV efficacy in GBM as they impede oHSV replication and spread [Alvarez-Breckenridge et al., Nat Med, 2012, 18(12):1827-34]. In the current study, we developed NK cell-based novel GBM therapies by decreasing the brain influx of NK cells to enhance the efficacy of oHSV, while arming NK cells in the brain with a chimeric antigen receptor (CAR) that targets both the wild-type EGFR and its mutant form EGFRvIII, two GBM tumor-associated antigens. We then investigated the synergistic effects between EGFR-CAR NK cells and oHSV. Transforming growth factor (TGF)-β is a potent immunosuppressive cytokine of NK cells [Yu et al, Immunity, 2006, 24(5):575-90]. We first determined if oHSV efficacy for treatment of GBM would be augmented by inhibiting anti-oHSV activity of NK cells with TGF-β pre-treatment. In vitro, NK cells pre-treated with TGF-β displayed less cytolytic capacity against oHSV-infected GBM cell lines and patient-derived GBM stem-like cells. In viral replication assays, co-culturing oHSV-infected GBM cells with NK cells pre-treated with TGF-β significantly increased virus titers. In an immunocompetent syngeneic GBM mouse model,administration of TGF-β to GBM-bearing mice prior to oHSV injection significantly inhibited intracranial infiltration and activation of NK cells (P < 0.05). In orthotopic human GBM xenograft mouse models and in syngeneic GBM mouse models, TGF-β treatment in vivo prior to oHSV therapy resulted in inhibition of NK cell infiltration, suppression of tumor growth and significantly prolonged survival of GBM-bearing mice (P < 0.05). Furthermore, depletion of NK cells incompletely blocked the positive effects of in vivo treatment of GBM with TGF-β on survival, suggesting that TGF-β may also directly act on other innate immune cells such as macrophages/microglia. These data demonstrate a single dose of TGF-β prior to oHSV administration enhances anti-tumor efficacy for GBM at least in part through the transient inhibition of the innate immune responses to oHSV infection. We next investigated whether NK cell activity could be enhanced to more directly target brain tumors while sparing eradication of oHSV. We therefore infected both human NK-92 cells and primary human NK cells to express the second generation CAR targeting both EGFR and EGFRvIII that we designed. Further, we asked if the treatment with EGFR-CAR NK cells plus oHSV could create a therapeutic synergy for the treatment to brain tumors. In vitro, compared with mock-transduced CAR-NK-cells, EGFR-CAR NK cells exhibited significantly higher cytotoxicity and IFN-γ production when co-cultured with tumor cells, for both NK-92 and primary NK cells (P < 0.01). Further, significantly higher cytolytic activity against tumor cells was obtained when CAR NK cells were combined with oHSV-1 infection of tumor cells, compared to either of the monotherapies alone (P < 0.05). In mice, to avoid oHSV clearance by the EGFR-CAR NK cells following the inoculation of the mouse with tumor cells, we administered these two agents sequentially; administering EGFR-CAR NK cells directly into the tumor first as a single injection of 2 × 106 cells, followed by intracranial infection with 2 × 105 plaque-forming units oHSV five days later, presumably after EGFR-CAR NK survival has diminished. Compared to vehicle controls, intracranial administration of either EGFR-CAR NK cells or oHSV blunted tumor growth. However, the combination of EGFR-CAR NK cells followed by oHSV infection resulted in significantly more efficient killing of tumor cells (P < 0.05) and significantly longer survival for tumor-bearing mice when compared to either monotherapy alone. Collectively, our studies demonstrate that in animal tumor models, we can combine novel NK cell and oHSV therapies to significantly improve survival. Disclosures No relevant conflicts of interest to declare.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1175 ◽  
Author(s):  
Andrea Balduit ◽  
Chiara Agostinis ◽  
Alessandro Mangogna ◽  
Veronica Maggi ◽  
Gabriella Zito ◽  
...  

The development of personalized therapies for ovarian carcinoma patients is still hampered by several limitations, mainly the difficulty of predicting patients’ responses to chemotherapy in tumor cells isolated from peritoneal fluids. The main reason for the low predictive power of in vitro assays is related to the modification of the cancer cells’ phenotype induced by the culture conditions, which results in changes to the activation state and drug sensitivity of tumor cells compared to their in vivo properties. We have defined the optimal culture conditions to set up a prognostic test to predict high-grade serous ovarian carcinoma (HGSOC) patients’ responses to platinum chemotherapy. We evaluated the effects of hyaluronic acid (HA) and fibronectin matrices and the contribution of freezing/thawing processes to the cell response to platinum-based treatment, collecting spheroids from the ascitic fluids of 13 patients with stage II or III HGSOC. Our findings indicated that an efficient model used to generate predictive data for in vivo sensitivity to platinum is culturing fresh spheroids on HA, avoiding the use of previously frozen primary tumor cells. The establishment of this easy, reproducible and standardized testing method can significantly contribute to an improvement in therapeutic effectiveness, thus bringing the prospect of personalized therapy closer for ovarian carcinoma patients.


Planta Medica ◽  
2017 ◽  
Vol 84 (02) ◽  
pp. 123-128 ◽  
Author(s):  
Fang Wang ◽  
Huanhuan Zhong ◽  
Shiqi Fang ◽  
Yunfeng Zheng ◽  
Cunyu Li ◽  
...  

Abstract Eupatorium lindleyanum has traditionally been used as folk medicine in Asian countries for its therapeutic effects on tracheitis and tonsillitis. Investigation of the anti-inflammatory active constituents from E. lindleyanum led to the isolation of two novel sesquiterpene lactones, named eupalinolide L (1) and eupalinolide M (2), and seven known sesquiterpene lactones (3–9). The structures and configurations of the new compounds were determined on the basis of spectroscopic analysis, especially 2D NMR techniques. In vivo experiments showed that the sesquiterpenes fraction significantly reduced mouse ear edema induced by xylene (18.6%, p < 0.05). In in vitro assays, compounds 1–9 showed excellent anti-inflammatory activities, as they lowered TNF-α and IL-6 levels in lipopolysaccharide-stimulated murine macrophage RAW 264.7 cells (p < 0.001). The above results suggest that the sesquiterpene lactones from E. lindleyanum can be developed as novel potential natural anti-inflammatory agents.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2756-2756 ◽  
Author(s):  
John Miller ◽  
Matthew J. Barth ◽  
Cory Mavis ◽  
Ping-Chiao Tsai ◽  
Pavel Klener ◽  
...  

Abstract Abstract 2756 The addition of rituximab to chemotherapy regimens utilized in treating B-cell non-Hodgkin lymphoma (B-NHL) has resulted in significant improvement in treatment response and clinical outcomes. On the other hand, the use of rituximab is changing the biology and response to second-line therapy in patients with relapsed/refractory disease. Novel anti-CD20 mAbs continue to be developed that may offer additional treatment options for relapsed/refractory rituximab-pre-treated patients. Ublituximab (TGTX-1101) is a novel, chimeric mAb targeting a unique epitope on the CD20 antigen. Ublituximab has been glycoengineered to enhance affinity for all variants of FcγRIIIa receptors. To further characterize the activity of ublituximab, we evaluated its anti-tumor activity in a panel of rituximab-sensitive (RSCL), rituximab–resistant (RRCL) cell lines, primary tumor cells isolated from patients with B-NHL by negative selection using magnetic beads, and in lymphoma SCID mice xenograft models. RSCL (Raji, RL, U2932, Granta, HBL-2, Jeko-1, Mino, Rec1 and Z-138), RRCL (Raji-2R, Raji 4RH, RL-4RH, and U2932-4RH); and cytarabine-resistant (AraCR) mantle cell lymphoma cell (MCL) lines (Granta-AraCR, HBL-2-AraCR, Jeko-AraCR, Mino-AraCR and Rec1-AraCR) were labeled with 51Cr. Subsequently, cells were exposed to ublituximab, rituximab or isotope control and human serum (25%) for complement dependent cytotoxicity (CDC) assays or to effector cells isolated from healthy volunteers (effector:target ratio 40:1) for antibody dependent cellular cytotoxicity (ADCC) assays, respectively. Antibody-induced direct anti-proliferative effects and induction of apoptosis were determined by alamar blue reduction assay and Annexin-V and propidium iodide staining, respectively. Primary tumor cells (n=11) were exposed to ublituximab, rituximab or isotype control +/− pooled human serum for 48 hr. Changes in ATP content were determined using the CellTiterGlo assay. For in vivo studies, 6–8 week old SCID mice were inoculated via tail vein injection with 1×106 Raji cells on day 0 and assigned to rituximab (10mg/kg/dose), ublituximab (10mg/kg/dose) or control group. MAb was given via tail vein injection on days +3, +7, +10 and +14. Differences in survival were analyzed by Kaplan-Meier curves and p values calculated using log rank test. Ublituximab induced significantly higher ADCC when compared to rituximab in 13 out of 17 cell lines tested (including all RRCL and cytarabine resistant MCL cells): (Raji 44.4% vs. 19.8%; Raji 4RH 17.5% vs. 8.3%; Raji 2R 28.2% vs. 12%; RL 40.9% vs. 17.8%; RL-4RH 33.5% vs. 17.2%; U2932 46.9% vs. 28.8%; U2932-4RH 40.2% vs. 22.1%; HBL-2AraCR 30.7% vs. 16.6%; Jeko 34.8% vs. 18.4; Jeko-AraCR 23.8% vs. 9.6; Mino 47.4% vs. 11.6%; Mino-AraCR 32.5% vs. 15.5; Rec1 30.9% vs. 0%; p-values <0.05). There was no significant difference between ublituximab and rituximab in terms of CMC (including studies performed in primary tumor cells) or direct signaling (i.e. apoptosis or cell proliferation). While ublituximab therapy prolonged the survival of lymphoma-bearing SCID mice when compared to controls, the anti-tumor activity in vivo was similar to rituximab. Our results suggest that ublituximab exhibits higher ADCC than rituximab in vitro, including in RRCL and elicits similar CDC and direct anti-tumor effects. Despite this enhanced ADCC activity, initial in vivo experiments did not result in improved survival compared to rituximab, however additional in vivo experiments investigating the activity of ublituximab in RRCL and MCL mouse models, testing alternative dose/schedule regimens and/or in combination with other anti-lymphoma agents are planned. Updated research results will be presented at the annual meeting. A Phase I/II trial of ublituximab in patients with relapsed/refractory NHL is currently ongoing. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document