scholarly journals Stability of Erythrocyte-Derived Nanovesicles Assessed by Light Scattering and Electron Microscopy

2021 ◽  
Vol 22 (23) ◽  
pp. 12772
Author(s):  
Darja Božič ◽  
Matej Hočevar ◽  
Matic Kisovec ◽  
Manca Pajnič ◽  
Ljubiša Pađen ◽  
...  

Extracellular vesicles (EVs) are gaining increasing amounts of attention due to their potential use in diagnostics and therapy, but the poor reproducibility of the studies that have been conducted on these structures hinders their breakthrough into routine practice. We believe that a better understanding of EVs stability and methods to control their integrity are the key to resolving this issue. In this work, erythrocyte EVs (hbEVs) were isolated by centrifugation from suspensions of human erythrocytes that had been aged in vitro. The isolate was characterised by scanning (SEM) and cryo-transmission electron microscopy (cryo-TEM), flow cytometry (FCM), dynamic/static light scattering (LS), protein electrophoresis, and UV-V spectrometry. The hbEVs were exposed to various conditions (pH (4–10), osmolarity (50–1000 mOsm/L), temperature (15–60 °C), and surfactant Triton X-100 (10–500 μM)). Their stability was evaluated by LS by considering the hydrodynamic radius (Rh), intensity of scattered light (I), and the shape parameter (ρ). The morphology of the hbEVs that had been stored in phosphate-buffered saline with citrate (PBS–citrate) at 4 °C remained consistent for more than 6 months. A change in the media properties (50–1000 mOsm/L, pH 4–10) had no significant effect on the Rh (=100–130 nm). At pH values below 6 and above 8, at temperatures above 45 °C, and in the presence of Triton X-100, hbEVs degradation was indicated by a decrease in I of more than 20%. Due to the simple preparation, homogeneous morphology, and stability of hbEVs under a wide range of conditions, they are considered to be a suitable option for EV reference material.

2015 ◽  
Vol 16 (2) ◽  
pp. 298-311
Author(s):  
Sanely Lourenço da Costa ◽  
Eduardo Paulino da Costa ◽  
Emílio César Martins Pereira ◽  
Wagner Gonzaga Gonçalves ◽  
Talita Fernandes da Silva ◽  
...  

The aim of this study was to investigate the interaction of human FSH (10ng/ml) with T4 (20ng/mL) on survival, activation and growth of preantral follicles cultured in vitro for 28 days. Fragments of non-cultured and cultured ovarian tissue were processed for classic histology and transmission electron microscopy. The results showed a reduction in the survival rate in all the media tested (one to 28 days) when compared to the fresh control. However the treatment with T4/hFSH for seven days of culture maintained the rate similar to the control. The media tested by one and 28 days reduced the percentage of primordial follicles in all periods of culture. However, T4/hFSH on day one of culture remained similar to the fresh control. None of the media were able to keep the percentage of the developing follicles. It was observed that the follicular diameter in the medium with T4/hFSH remained similar to the fresh control. The ultrastructural analysis confirmed the integrity of follicles cultured for seven days in a medium supplemented with T4/hFSH. In conclusion, the medium with T4/hFSH is able to maintain the survival, promote the activation, and the ultrastructural integrity of caprine preantral follicles for until seven days.


Development ◽  
1985 ◽  
Vol 86 (1) ◽  
pp. 143-154
Author(s):  
Steven Campbell ◽  
Jonathan B. L. Bard

Neural crest (NC) cells from the periorbital mesenchyme (POM) invade the acellular stroma of the chick cornea at stage 27 of development (∼6 days). The invading cells become collagenproducing fibroblasts while the NC cells remaining in the POM differentiate into a wide range of cell types, the most easily recognizable of which is the pigment-producing melanocyte. In this paper, we report observations on the differentiation in vitro of cells within and migrating from explants of corneal stroma and compare their behaviour with that of cells within and migrating from explants of the POM. In ∼70% of cases, POM explants produced black, eumelanin pigmentation within 2–3 days in culture and gave rise to a mixed outgrowth of fibroblasts and melanoblasts that produced brown pigment. In no case, however, did a corneal explant produce black pigment (so demonstrating that any POM contamination was negligible). However, in 28% of cultures from stage-27 and -28 corneas, some of the cells in the outgrowth contained brown pigment indistinguishable from that produced by the POM control, although the majority of the cells in each case were fibroblasts. Two lines of investigation demonstrated that this pigment was melanin: first, transmission electron microscopy showed that the pigment organelles were incompletely melanized, granular melanosomes; second, tests designed to demonstrate the presence of lipofuscin, an alternative pigment, proved negative. Migrating cells from older corneas, in contrast, showed no evidence of even the first stages of melanogenesis. These results show, first, that some of the NC cells that invade the cornea are at least bipotent and hence representative of the POM population rather than being a unique subgroup and, second, that the acellular stroma of the cornea determines the state of differentiation of the NC cells that colonize it. The results thus provide an unequivocal demonstration that extracellular matrix can induce postmigratory NC cells to differentiate into fibroblasts.


Author(s):  
Tai-Te Chao ◽  
John Sullivan ◽  
Awtar Krishan

Maytansine, a novel ansa macrolide (1), has potent anti-tumor and antimitotic activity (2, 3). It blocks cell cycle traverse in mitosis with resultant accumulation of metaphase cells (4). Inhibition of brain tubulin polymerization in vitro by maytansine has also been reported (3). The C-mitotic effect of this drug is similar to that of the well known Vinca- alkaloids, vinblastine and vincristine. This study was carried out to examine the effects of maytansine on the cell cycle traverse and the fine struc- I ture of human lymphoblasts.Log-phase cultures of CCRF-CEM human lymphoblasts were exposed to maytansine concentrations from 10-6 M to 10-10 M for 18 hrs. Aliquots of cells were removed for cell cycle analysis by flow microfluorometry (FMF) (5) and also processed for transmission electron microscopy (TEM). FMF analysis of cells treated with 10-8 M maytansine showed a reduction in the number of G1 cells and a corresponding build-up of cells with G2/M DNA content.


Author(s):  
John C. Garancis ◽  
Robert O. Hussa ◽  
Michael T. Story ◽  
Donald Yorde ◽  
Roland A. Pattillo

Human malignant trophoblast cells in continuous culture were incubated for 3 days in medium containing 1 mM N6-O2'-dibutyryl cyclic adenosine 3':5'-monophosphate (dibutyryl cyclic AMP) and 1 mM theophylline. The culture fluid was replenished daily. Stimulated cultures secreted many times more chorionic gonadotropin and estrogens than did control cultures in the absence of increased cellular proliferation. Scanning electron microscopy revealed remarkable surface changes of stimulated cells. Control cells (not stimulated) were smooth or provided with varying numbers of microvilli (Fig. 1). The latter, usually, were short and thin. The surface features of stimulated cells were considerably different. There was marked increase of microvilli which appeared elongated and thick. Many cells were covered with confluent polypoid projections (Fig. 2). Transmission electron microscopy demonstrated marked activity of cytoplasmic organelles. Mitochondria were increased in number and size; some giant forms with numerous cristae were observed.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 768
Author(s):  
Maddalena Sguizzato ◽  
Francesca Ferrara ◽  
Supandeep Singh Hallan ◽  
Anna Baldisserotto ◽  
Markus Drechsler ◽  
...  

Mangiferin is a natural glucosyl xanthone with antioxidant and anti-inflammatory activity, making it suitable for protection against cutaneous diseases. In this study ethosomes and transethosomes were designed as topical delivery systems for mangiferin. A preformulation study was conducted using different surfactants in association with phosphatidylcholine. Vesicle dimensional distribution was monitored by photon correlation spectroscopy, while antioxidant capacity and cytotoxicity were respectively assessed by free radical scavenging analysis and MTT on HaCaT keratinocytes. Selected nanosystems were further investigated by cryogenic transmission electron microscopy, while mangiferin entrapment capacity was evaluated by ultracentrifugation and HPLC. The diffusion kinetics of mangiferin from ethosomes and transethosomes evaluated by Franz cell was faster in the case of transethosomes. The suitability of mangiferin-containing nanovesicles in the treatment of skin disorders related to pollutants was investigated, evaluating, in vitro, the antioxidant and anti-inflammatory effect of ethosomes and transethosomes on human keratinocytes exposed to cigarette smoke as an oxidative and inflammatory challenger. The ability to induce an antioxidant response (HO-1) and anti-inflammatory status (IL-6 and NF-kB) was determined by RT-PCR and immunofluorescence. The data demonstrated the effectiveness of mangiferin loaded in nanosystems to protect cells from damage. Finally, to gain insight into the keratinocytes’ uptake of ethosome and transethosome, transmission electron microscopy analyses were conducted, showing that both nanosystems were able to pass intact within the cells.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Renata Dobrucka ◽  
Aleksandra Romaniuk-Drapała ◽  
Mariusz Kaczmarek

AbstractMetal combinations have been attracting the attention of scientists for some time. They usually exhibit new characteristics that are different from the ones possessed by their components. In this work, Au/ZnO/Ag nanoparticles were synthesized biologically using Glechoma hederacea L. extract. The synthesized Au/ZnO/Ag nanoparticles were characterized by UV-Vis, Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Atomic Force Microscopy (AFM). The microscopic methods confirmed the presence of spherical nanoparticles of 50–70 nm. The influence of biologically synthesized Au/ZnO/Ag nanoparticles on the vitality of human cells was evaluated in vitro with the use of established human Acute T Cell Leukemia cell line, Jurkat (ATCC® TIB-152™), as well as mononuclear cells isolated from peripheral blood (PBMC) of voluntary donors. Cell survival and the half-maximal inhibitory concentration index (IC50) were analyzed by the MTT test. The studies showed that the total loss of cell viability occurred at the Au/ZnO/Ag nanoparticle concentration range of 10 µmol–50 µmol. The use of Au/ZnO/Ag nanoparticles at the concentration of 100 µmol eliminated almost all living cells from the culture in 24h. The above observation confirms the result obtained during the MTT test.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1131
Author(s):  
Maricela Santana ◽  
Gonzalo Montoya ◽  
Raúl Herrera ◽  
Lía Hoz ◽  
Enrique Romo ◽  
...  

Dental cementum contains unique molecules that regulate the mineralization process in vitro and in vivo, such as cementum protein 1 (CEMP1). This protein possesses amino acid sequence motifs like the human recombinant CEMP1 with biological activity. This novel cementum protein 1-derived peptide (CEMP1-p3, from the CEMP1’s N-terminal domain: (QPLPKGCAAVKAEVGIPAPH), consists of 20 amino acids. Hydroxyapatite (HA) crystals could be obtained through the combination of the amorphous precursor phase and macromolecules such as proteins and peptides. We used a simple method to synthesize peptide/hydroxyapatite nanocomposites using OCP and CEMP1-p3. The characterization of the crystals through scanning electron microscopy (SEM), powder X-ray diffraction (XRD), high--resolution transmission electron microscopy (HRTEM), and Raman spectroscopy revealed that CEMP1-p3 transformed OCP into hydroxyapatite (HA) under constant ionic strength and in a buffered solution. CEMP1-p3 binds and highly adsorbs to OCP and is a potent growth stimulator of OCP crystals. CEMP1-p3 fosters the transformation of OCP into HA crystals with crystalline planes (300) and (004) that correspond to the cell of hexagonal HA. Octacalcium phosphate crystals treated with CEMP1-p3 grown in simulated physiological buffer acquired hexagonal arrangement corresponding to HA. These findings provide new insights into the potential application of CEMP1-p3 on possible biomimetic approaches to generate materials for the repair and regeneration of mineralized tissues, or restorative materials in the orthopedic field.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 224 ◽  
Author(s):  
Jung-Eun Park ◽  
Yong-Seok Jang ◽  
Tae-Sung Bae ◽  
Min-Ho Lee

Multi walled carbon nanotubes-hydroxyapatite (MWCNTs-HA) with various contents of MWCNTs was synthesized using the sol-gel method. MWCNTs-HA composites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). HA particles were generated on the surface of MWCNT. Produced MWCNTs-HA nanocomposites were coated on pure titanium (PT). Characteristic of the titanium coated MWCNTs-HA was evaluated by field-emission scanning electron microscopy (FE-SEM) and XRD. The results show that the titanium surface was covered with MWCNTs-HA nanoparticles and MWCNTs help form the crystalized hydroxyapatite. Furthermore, the MWCNTs-HA coated titanium was investigated for in vitro cellular responses. Cell proliferation and differentiation were improved on the surface of MWCNT-HA coated titanium.


1975 ◽  
Vol 66 (1) ◽  
pp. 198-200 ◽  
Author(s):  
D Mazia ◽  
G Schatten ◽  
W Sale

Cells of many kinds adhere firmly to glass or plastic surfaces which have been pretreated with polylysine. The attachment takes place as soon as the cells make contact with the surfaces, and the flattening of the cells against the surfaces is quite rapid. Cells which do not normally adhere to solid surfaces, such as sea urchin eggs, attach as well as cells which normally do so, such as amebas or mammalian cells in culture. The adhesion is interpreted simply as the interaction between the polyanionic cell surfaces and the polycationic layer of adsorbed polylysine. The attachment of cells to the polylysine-treated surfaces can be exploited for a variety of experimental manipulations. In the preparation of samples for scanning or transmission electron microscopy, the living material may first be attached to a polylysine-coated plate or grid, subjected to some experimental treatment (fertilization of an egg, for example), then transferred rapidly to fixative and further passed through processing for observation; each step involves only the transfer of the plate or grid from one container to the next. The cells are not detached. The adhesion of the cell may be so firm that the body of the cell may be sheared away, leaving attached a patch of cell surface, face up, for observation of its inner aspect. For example, one may observe secretory vesicles on the inner face of the surface (3) or may study the association of filaments with the inner surface (Fig. 1). Subcellular structures may attach to the polylysine-coated surfaces. So far, we have found this to be the case for nuclei isolated from sea urchin embryos and for the microtubules of flagella, which are well displayed after the membrane has been disrupted by Triton X-100 (Fig. 2).


Author(s):  
Gernot Seebacher ◽  
Axel A. Schmidt ◽  
Jochen Offermann

The paper provides background on how bilge water has changed over the years and how technology has enabled manufacturers to stay ahead of the curve by borrowing technological breakthroughs from other areas to the measurement of oil content in the marine environment. Light scattering provides today a universal and reliable method, able to measure the wide range of oils present in a wildly variable and unpredictable bilge water mixture. Bilge water regulations were put in place to reduce the potential of harm to the environment from oily bilge water discharges. Regulations require that instruments verify effluent quality continually during the discharge process, which precludes the adoption for shipboard use of standard laboratory style testing with the associated time delays to complete the analysis. Measuring oil content with the light scattering measuring instrument is a tried and tested means for compliant bilge water verification. State of the art instruments employ sophisticated light measuring systems and they use complex algorithms to convert the scattered light pattern values into oil content reading, thereby considering interference from other than oil suspended matter, they prevent harm to the environment from bilge water discharges. Paper published with permission.


Sign in / Sign up

Export Citation Format

Share Document