scholarly journals PCSK9 Imperceptibly Affects Chemokine Receptor Expression In Vitro and In Vivo

2021 ◽  
Vol 22 (23) ◽  
pp. 13026
Author(s):  
Sai Sahana Sundararaman ◽  
Linsey J. F. Peters ◽  
Sumra Nazir ◽  
Andrea Bonnin Marquez ◽  
Janneke E. Bouma ◽  
...  

Proprotein convertase subtilin/kexin type 9 (PCSK9) is a protease secreted mainly by hepatocytes and in lesser quantities by intestines, pancreas, and vascular cells. Over the years, this protease has gained importance in the field of cardiovascular biology due to its regulatory action on the low-density lipoprotein receptor (LDLR). However, recently, it has also been shown that PCSK9 acts independent of LDLR to cause vascular inflammation and increase the severity of several cardiovascular disorders. We hypothesized that PCSK9 affects the expression of chemokine receptors, major mediators of inflammation, to influence cardiovascular health. However, using overexpression of PCSK9 in murine models in vivo and PCSK9 stimulation of myeloid and vascular cells in vitro did not reveal influences of PCSK9 on the expression of certain chemokine receptors that are known to be involved in the development and progression of atherosclerosis and vascular inflammation. Hence, we conclude that the inflammatory effects of PCSK9 are not associated with the here investigated chemokine receptors and additional research is required to elucidate which mechanisms mediate PCSK9 effects independent of LDLR.

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1932
Author(s):  
Chiara D’Angelo ◽  
Sara Franceschelli ◽  
José Luis Quiles ◽  
Lorenza Speranza

The growing incidence of cardiovascular disease (CVD) has promoted investigations of natural molecules that could prevent and treat CVD. Among these, hydroxytyrosol, a polyphenolic compound of olive oil, is well known for its antioxidant, anti-inflammatory, and anti-atherogenic effects. Its strong antioxidant properties are due to the scavenging of radicals and the stimulation of synthesis and activity of antioxidant enzymes (SOD, CAT, HO-1, NOS, COX-2, GSH), which also limit the lipid peroxidation of low-density lipoprotein (LDL) cholesterol, a hallmark of atherosclerosis. Lowered inflammation and oxidative stress and an improved lipid profile were also demonstrated in healthy subjects as well as in metabolic syndrome patients after hydroxytyrosol (HT) supplementation. These results might open a new therapeutic scenario through personalized supplementation of HT in CVDs. This review is the first attempt to collect together scientific literature on HT in both in vitro and in vivo models, as well as in human clinical studies, describing its potential biological effects for cardiovascular health.


2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Yeh-Lin Lu ◽  
Chia-Jung Lee ◽  
Shyr-Yi Lin ◽  
Wen-Chi Hou

Abstract Background The root major proteins of sweet potato trypsin inhibitors (SPTIs) or named sporamin, estimated for 60 to 80% water-soluble proteins, exhibited many biological activities. The human low-density lipoprotein (LDL) showed to form in vivo complex with endogenous oxidized alpha-1-antitrypsin. Little is known concerning the interactions between SPTIs and LDL in vitro. Results The thiobarbituric-acid-reactive-substance (TBARS) assays were used to monitor 0.1 mM Cu2+-mediated low-density lipoprotein (LDL) oxidations during 24-h reactions with or without SPTIs additions. The protein stains in native PAGE gels were used to identify the bindings between native or reduced forms of SPTIs or soybean TIs and LDL, or oxidized LDL (oxLDL). It was found that the SPTIs additions showed to reduce LDL oxidations in the first 6-h and then gradually decreased the capacities of anti-LDL oxidations. The protein stains in native PAGE gels showed more intense LDL bands in the presence of SPTIs, and 0.5-h and 1-h reached the highest one. The SPTIs also bound to the oxLDL, and low pH condition (pH 2.0) might break the interactions revealed by HPLC. The LDL or oxLDL adsorbed onto self-prepared SPTIs-affinity column and some components were eluted by 0.2 M KCl (pH 2.0). The native or reduced SPTIs or soybean TIs showed different binding capacities toward LDL and oxLDL in vitro. Conclusion The SPTIs might be useful in developing functional foods as antioxidant and nutrient supplements, and the physiological roles of SPTIs-LDL and SPTIs-oxLDL complex in vivo will investigate further using animal models.


2018 ◽  
Vol 38 (10) ◽  
Author(s):  
Susana Beceiro ◽  
Attila Pap ◽  
Zsolt Czimmerer ◽  
Tamer Sallam ◽  
Jose A. Guillén ◽  
...  

ABSTRACTThe liver X receptors (LXRs) are ligand-activated nuclear receptors with established roles in the maintenance of lipid homeostasis in multiple tissues. LXRs exert additional biological functions as negative regulators of inflammation, particularly in macrophages. However, the transcriptional responses controlled by LXRs in other myeloid cells, such as dendritic cells (DCs), are still poorly understood. Here we used gain- and loss-of-function models to characterize the impact of LXR deficiency on DC activation programs. Our results identified an LXR-dependent pathway that is important for DC chemotaxis. LXR-deficient mature DCs are defective in stimulus-induced migrationin vitroandin vivo. Mechanistically, we show that LXRs facilitate DC chemotactic signaling by regulating the expression of CD38, an ectoenzyme important for leukocyte trafficking. Pharmacological or genetic inactivation of CD38 activity abolished the LXR-dependent induction of DC chemotaxis. Using the low-density lipoprotein receptor-deficient (LDLR−/−) LDLR−/−mouse model of atherosclerosis, we also demonstrated that hematopoietic CD38 expression is important for the accumulation of lipid-laden myeloid cells in lesions, suggesting that CD38 is a key factor in leukocyte migration during atherogenesis. Collectively, our results demonstrate that LXRs are required for the efficient emigration of DCs in response to chemotactic signals during inflammation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuan-ming Jiang ◽  
Wei Liu ◽  
Ling Jiang ◽  
Hongbin Chang

Background. Circular RNAs (circRNAs) have been reported to play important roles in the development and progression of papillary thyroid carcinoma (PTC). However, the function and molecular mechanism of circRNA low-density lipoprotein receptor (circLDLR) in the tumorigenesis of PTC remain unknown. Results. In this study, circLDLR was found to be markedly upregulated in PTC tissues and cell lines, and knockdown of circLDLR inhibited PTC cell proliferation, migration, and invasion but induced apoptosis in vitro. Moreover, circLDLR acted as a sponge for miR-637, and miR-637 interference reversed the anticancer effects of circLDLR knockdown on PTC cells. LMO4 was verified to be a target of miR-637; LMO4 upregulation abolished miR-637 mediated inhibition of cell growth and metastasis in PTC. Additionally, circLDLR could indirectly modulate LMO4 via acting as a sponge of miR-637 in PTC cells. Besides that, xenograft analysis showed that circLDLR knockdown suppressed tumor growth in vivo via regulating LMO4 and miR-637. Conclusion. Taken together, these results demonstrated that circLDLR promoted PTC tumorigenesis through miR-637/LMO4 axis, which may provide a novel insight into the understanding of PTC tumorigenesis and be useful in developing potential targets for PTC treatment.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Hiroe Go ◽  
Jin Ah Ryuk ◽  
Hye Won Lee ◽  
In Sil Park ◽  
Ki-Jung Kil ◽  
...  

The present study was conducted to investigate the effect of Sagunja-tang on the lipid related disease in a rat model of menopausal hyperlipidemia and lipid accumulation in methyl-β-cyclodextrin-induced HepG2 cells. Inin vivostudy using menopausal hyperlipidemia rats, Sagunja-tang reduced retroperitoneal and perirenal fat, serum lipids, atherogenic index, cardiac risk factor, media thickness, and nonalcoholic steatohepatitis score, when compared to menopausal hyperlipidemia control rats. In HepG2 cells, Sagunja-tang significantly decreased the lipid accumulation, total cholesterol levels, and low-density/very-low-density lipoprotein levels. Moreover, Sagunja-tang reversed the methyl-β-cyclodextrin-induced decrease in the protein levels of critical molecule involved in cholesterol synthesis, sterol regulatory element binding protein-2, and low-density lipoprotein receptor and inhibited protein levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase as well as activity. Phosphorylation level of AMP-activated protein kinase was stimulated by Sagunja-tang. These results suggest that Sagunja-tang has effect on inhibiting hepatic lipid accumulation through regulation of cholesterol synthesis and AMPK activityin vitro. These observations support the idea that Sagunja-tang is bioavailable bothin vivoandin vitroand could be developed as a preventive and therapeutic agent of hyperlipidemia in postmenopausal females.


Author(s):  
Shahenda, M. Elaby ◽  
Asmaa A. Salem ◽  
Jehan, B. Ali ◽  
A. F. Abdel-Salam

Two lactobacilli strains; Lactobacillus acidophilus ATCC 20079 and Lactobacillus plantarum ATCC 20179 and two bifidobacteria strains; Bifidobacterium bifidum GSGG 5286 and Bifidobacterium longum ATCC 15707 were studied their abilities to reduce the cholesterol content in vitro. It was investigated that the in vivo cholesterol-lowering effect of L. plantarum ATCC 20179, B. bifidum GSGG 5286 and mixture of both probiotics (L. plantarum ATCC20179 and B. bifidum GSGG5286) on hyperlipidaemic rats for 8 weeks. All lactobacilli and bifidobacteria strains assimilate the cholesterol content in laboratory media. It was observed the highest assimilation of cholesterol was in L. plantarum ATCC 20179 and B. bifidum GSGG 5286 strains. In vivo, L. plantarum ATCC 20179  group was more effective in improving serum lipid profile levels [total cholesterol (TC), triglycerides (TG), low density lipoprotein – cholesterol (LDL-C), high density lipoprotein – cholesterol                   (HDL-C), very low density lipoprotein – cholesterol (VLDL-C) and Atherogenic Index (AI)],                      liver enzyme activities (ALT, AST and ALP),  malonaldehyde (MDA), hydrogen peroxide (H2O2) and total antioxidants capacity (TAC) levels than mixed-organisms and B. bifidum groups, respectively of hyperlipidaemic rats. It was concluded that L. plantarum ATCC 20179 showed more                     favourable results than B. bifidum GSGG 5286 in relation to cardiovascular risk factors in hyperlipidaemic rats.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Younghwa Goo ◽  
Pradip Saha ◽  
Larry Chan ◽  
Antoni Paul

Lipid laden macrophages/foam cells are a hallmark of atherosclerotic lesions from early to late stages of development. Macrophages take-up modified low-density lipoprotein (mLDL) particles and store surplus mLDL-derived cholesterol as cholesterol ester (CE) in cytoplasmic lipid droplets (LDs). Accelerating CE hydrolysis from the LDs is a plausible strategy to promote reverse cholesterol transport from the atheroma. However, the identity of the CE hydrolases that function on LDs remains unknown. Previously we identified lipid droplet-associated hydrolase (LDAH) in LDs purified from macrophages and reported that in vitro LDAH regulates CE levels by increasing CE hydrolysis. To determine the relevance of LDAH in atherogenesis, we have generated LDAH knockout (LDAH-/-) mice. Mouse peritoneal macrophages (MPM) isolated from LDAH-/- mice had increased cytoplasmic LDs, increased net CE content, and decreased cholesterol efflux. In atherosclerosis studies, both male and female LDAH-/- mice crossed with apolipoprotein E knockout (apoE-/-) mice fed a Western diet developed larger lesions. Lesions of LDAH-/-/ apoE-/- mice were characterized by increased areas of macrophages containing enlarged cytoplasms with large LDs. Supporting a direct atheroprotective role of LDAH in macrophages, lesions of apoE-/- mice that received bone marrows from LDAH-/-/apoE-/- mice progressed faster than those that received bone marrow cells from LDAH+/+/apoE-/- mice. In qPCR analyses of genes involved in cholesterol homeostasis in macrophages, we found that ABC binding cassette transporters ABCA1 and ABCG1, which mediate cholesterol efflux through the plasma membrane, were consistently decreased in LDAH-/- MPM. Further in vivo gene expression studies on macrophages selectively obtained from lesions using laser capture microdissection are underway. In conclusion, our study suggests that LDAH promotes LD CE hydrolysis and cholesterol efflux from foam cells within the atheroma, and uncovers a potential target to promote reverse cholesterol from arteries as a means of ameliorating atherosclerosis development.


2018 ◽  
Vol 38 (3) ◽  
pp. 356-370 ◽  
Author(s):  
A Gautam ◽  
YN Paudel ◽  
SAZ Abidin ◽  
U Bhandari

The current study investigated the role of guggulsterone (GS), a farnesoid X receptor antagonist, in the choline metabolism and its trimethylamine (TMA)/flavin monooxygenases/trimethylamine- N-oxide (TMAO) inhibiting potential in a series of in vitro and in vivo studies as determined by high-performance liquid chromatography (HPLC), mass spectroscopy (MS), and liquid chromatography (LC)-MS techniques. Atherosclerosis (AS) was successfully induced in a group of experimental animals fed with 2% choline diet for 6 weeks. Serum lipid profiles such as total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol were measured. Pro-inflammatory cytokines levels, markers for a hepatic injury, and oxidative stress markers were assessed. Interestingly, GS reduced the level of TMA/TMAO in both in vitro and in vivo studies as demonstrated by the peaks obtained from HPLC, MS, and LC–MS. Furthermore, GS exhibited cardioprotective and antihyperlipidemic effects as evidenced by the attenuation of levels of several serum lipid profiles and different atherogenic risk predictor indexes. GS also prevented hepatic injury by successfully restoring the levels of hepatic injury biomarkers to normal. Similarly, GS inhibited the production of pro-inflammatory cytokines levels, as well as GS, enhanced antioxidant capacity, and reduced lipid peroxidation. Histopathological study of aortic sections demonstrated that GS maintained the normal architecture in AS-induced rats. On the basis of results obtained from current investigation, we suggest that GS might have a great therapeutic potential for the treatment of AS.


2007 ◽  
Vol 77 (1) ◽  
pp. 66-72 ◽  
Author(s):  
McEneny ◽  
Couston ◽  
McKibben ◽  
Young ◽  
Woodside

Raised total homocysteine (tHcy) levels may be involved in the etiology of cardiovascular disease and can lead to damage of vascular endothelial cells and arterial wall matrix. Folic acid supplementation can help negate these detrimental effects by reducing tHcy. Recent evidence has suggested an additional anti-atherogenic property of folate in protecting lipoproteins against oxidation. This study utilized both an in vitro and in vivo approach. In vitro: Very-low-density lipoprotein (VLDL) and low density lipoprotein (LDL) were isolated by rapid ultracentrifugation and then oxidized in the presence of increasing concentrations (0→ μmol/L) of either folic acid or 5-methyltetrahydrofolate (5-MTHF). In vivo: Twelve female subjects were supplemented with folic acid (1 mg/day), and the pre- and post-VLDL and LDL isolates subjected to oxidation. In vitro: 5-MTHF, but not folic acid, significantly increased the resistance of VLDL and LDL to oxidation. In vivo: Following folic acid supplementation, tHcy decreased, serum folate increased, and both VLDL and LDL displayed a significant increase in their resistance to oxidation. These results indicated that in vitro, only the active form of folate, 5-MTHF, had antioxidant properties. In vivo results demonstrated that folic acid supplementation reduced tHcy and protected both VLDL and LDL against oxidation. These findings provide further support for the use of folic acid supplements to aid in the prevention of atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document