scholarly journals Liver X Receptor Nuclear Receptors Are Transcriptional Regulators of Dendritic Cell Chemotaxis

2018 ◽  
Vol 38 (10) ◽  
Author(s):  
Susana Beceiro ◽  
Attila Pap ◽  
Zsolt Czimmerer ◽  
Tamer Sallam ◽  
Jose A. Guillén ◽  
...  

ABSTRACTThe liver X receptors (LXRs) are ligand-activated nuclear receptors with established roles in the maintenance of lipid homeostasis in multiple tissues. LXRs exert additional biological functions as negative regulators of inflammation, particularly in macrophages. However, the transcriptional responses controlled by LXRs in other myeloid cells, such as dendritic cells (DCs), are still poorly understood. Here we used gain- and loss-of-function models to characterize the impact of LXR deficiency on DC activation programs. Our results identified an LXR-dependent pathway that is important for DC chemotaxis. LXR-deficient mature DCs are defective in stimulus-induced migrationin vitroandin vivo. Mechanistically, we show that LXRs facilitate DC chemotactic signaling by regulating the expression of CD38, an ectoenzyme important for leukocyte trafficking. Pharmacological or genetic inactivation of CD38 activity abolished the LXR-dependent induction of DC chemotaxis. Using the low-density lipoprotein receptor-deficient (LDLR−/−) LDLR−/−mouse model of atherosclerosis, we also demonstrated that hematopoietic CD38 expression is important for the accumulation of lipid-laden myeloid cells in lesions, suggesting that CD38 is a key factor in leukocyte migration during atherogenesis. Collectively, our results demonstrate that LXRs are required for the efficient emigration of DCs in response to chemotactic signals during inflammation.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Fei Xu ◽  
Hui Yu ◽  
Cai Lu ◽  
Jun Chen ◽  
Wei Gu

This study measured the impact of alisol B 23-acetate and alisol A 24-acetate, the main active ingredients of the traditional Chinese medicine Alismatis rhizoma, on total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), and low density lipoprotein-cholesterol (LDL-C) levels of hyperlipidemic mice. The binding of alisol B 23-acetate and alisol A 24-acetate to the key enzyme involved in the metabolism of TC, 3-hydroxy-3-methylglutary-coenzyme A (HMG-CoA) reductase, was studied using the reagent kit method and the western blotting technique combined with a molecular simulation technique. According to the results, alisol acetates significantly lower the TC, TG, and LDL-C concentrations of hyperlipidemic mice, while raising HDL-C concentrations. Alisol acetates lower HMG-CoA reductase activity in a dose-dependent fashion, both in vivo and in vitro. Neither of these alisol acetates significantly lower the protein expression of HMG-CoA. This suggests that alisol acetates lower the TC level via inhibiting the activity of HMG-CoA reductase by its prototype drug, which may exhibit an inhibition effect via directly and competitively binding to HMG-CoA. The side chain of the alisol acetate was the steering group via molecular simulation.


2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Yeh-Lin Lu ◽  
Chia-Jung Lee ◽  
Shyr-Yi Lin ◽  
Wen-Chi Hou

Abstract Background The root major proteins of sweet potato trypsin inhibitors (SPTIs) or named sporamin, estimated for 60 to 80% water-soluble proteins, exhibited many biological activities. The human low-density lipoprotein (LDL) showed to form in vivo complex with endogenous oxidized alpha-1-antitrypsin. Little is known concerning the interactions between SPTIs and LDL in vitro. Results The thiobarbituric-acid-reactive-substance (TBARS) assays were used to monitor 0.1 mM Cu2+-mediated low-density lipoprotein (LDL) oxidations during 24-h reactions with or without SPTIs additions. The protein stains in native PAGE gels were used to identify the bindings between native or reduced forms of SPTIs or soybean TIs and LDL, or oxidized LDL (oxLDL). It was found that the SPTIs additions showed to reduce LDL oxidations in the first 6-h and then gradually decreased the capacities of anti-LDL oxidations. The protein stains in native PAGE gels showed more intense LDL bands in the presence of SPTIs, and 0.5-h and 1-h reached the highest one. The SPTIs also bound to the oxLDL, and low pH condition (pH 2.0) might break the interactions revealed by HPLC. The LDL or oxLDL adsorbed onto self-prepared SPTIs-affinity column and some components were eluted by 0.2 M KCl (pH 2.0). The native or reduced SPTIs or soybean TIs showed different binding capacities toward LDL and oxLDL in vitro. Conclusion The SPTIs might be useful in developing functional foods as antioxidant and nutrient supplements, and the physiological roles of SPTIs-LDL and SPTIs-oxLDL complex in vivo will investigate further using animal models.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Christina Grothusen ◽  
Harald Schuett ◽  
Stefan Lumpe ◽  
Andre Bleich ◽  
Silke Glage ◽  
...  

Introduction: Atherosclerosis is a chronic inflammatory disease of the cardiovascular system which may result in myocardial infarction and sudden cardiac death. While the role of pro-inflammatory signaling pathways in atherogenesis has been well characterized, the impact of their negative regulators, e.g. suppressor of cytokine signaling (SOCS)-1 remains to be elucidated. Deficiency of SOCS-1 leads to death 3 weeks post-partum due to an overwhelming inflammation caused by an uncontrolled signalling of interferon-gamma (IFNγ). This phenotype can be rescued by generating recombination activating gene (rag)-2, SOCS-1 double knock out (KO) mice lacking mature lymphocytes, the major source of IFNγ. Since the role of SOCS-1 during atherogenesis is unknown, we investigated the impact of a systemic SOCS-1 deficiency in the low-density lipoprotein receptor (ldlr) KO model of atherosclerosis. Material and Methods: socs-1 −/− /rag-2 −/− deficient mice were crossed with ldlr-KO animals. Mice were kept under sterile conditions on a normal chow diet. For in-vitro analyses, murine socs-1 −/− macrophages were stimulated with native low density lipoprotein (nLDL) or oxidized (ox)LDL. SOCS-1 expression was determined by quantitative PCR and western blot. Foam cell formation was determined by Oil red O staining. Results: socs-1 −/− /rag-2 −/− /ldlr −/− mice were born according to mendelian law. Tripel-KO mice showed a reduced weight and size, were more sensitive to bacterial infections and died within 120 days (N=17). Histological analyses revealed a systemic, necrotic, inflammation in Tripel-KO mice. All other genotypes developed no phenotype. In-vitro observations revealed that SOCS-1 mRNA and protein is upregulated in response to stimulation with oxLDL but not with nLDL. Foam cell formation of socs-1 −/− macrophages was increased compared to controls. Conclusion: SOCS-1 seemingly controls critical steps of atherogenesis by modulating foam cell formation in response to stimulation with oxLDL. SOCS-1 deficiency in the ldlr-KO mouse leads to a lethal inflammation. These observations suggest a critical role for SOCS-1 in the regulation of early inflammatory responses in atherogenesis.


2020 ◽  
Vol 295 (39) ◽  
pp. 13617-13629
Author(s):  
Clément Immarigeon ◽  
Sandra Bernat-Fabre ◽  
Emmanuelle Guillou ◽  
Alexis Verger ◽  
Elodie Prince ◽  
...  

The evolutionarily conserved multiprotein Mediator complex (MED) serves as an interface between DNA-bound transcription factors (TFs) and the RNA Pol II machinery. It has been proposed that each TF interacts with a dedicated MED subunit to induce specific transcriptional responses. But are these binary partnerships sufficient to mediate TF functions? We have previously established that the Med1 Mediator subunit serves as a cofactor of GATA TFs in Drosophila, as shown in mammals. Here, we observe mutant phenotype similarities between another subunit, Med19, and the Drosophila GATA TF Pannier (Pnr), suggesting functional interaction. We further show that Med19 physically interacts with the Drosophila GATA TFs, Pnr and Serpent (Srp), in vivo and in vitro through their conserved C-zinc finger domains. Moreover, Med19 loss of function experiments in vivo or in cellulo indicate that it is required for Pnr- and Srp-dependent gene expression, suggesting general GATA cofactor functions. Interestingly, Med19 but not Med1 is critical for the regulation of all tested GATA target genes, implying shared or differential use of MED subunits by GATAs depending on the target gene. Lastly, we show a direct interaction between Med19 and Med1 by GST pulldown experiments indicating privileged contacts between these two subunits of the MED middle module. Together, these findings identify Med19/Med1 as a composite GATA TF interface and suggest that binary MED subunit–TF partnerships are probably oversimplified models. We propose several mechanisms to account for the transcriptional regulation of GATA-targeted genes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yi Sun ◽  
Shuna Huang ◽  
Chunyu Wan ◽  
Qishuang Ruan ◽  
Xiaoxu Xie ◽  
...  

Background: This study investigated the association between long non-coding RNAs (lncRNAs) and coronary heart disease (CHD) and further elucidated the potential biological roles of lncRNAs in CHD pathogenesis.Methods: A case-control study (590 patients and 590 controls) was conducted from February 2017 and March 2019 in Fuzhou, China. Environmental factors were investigated using questionnaires and physical examinations. Five representative lncRNAs were screened using lncRNA microarray (peripheral blood in 5 cases and 5 controls) and further verified by quantitative real-time polymerase chain reaction (peripheral blood leukocyte in 100 cases and 100 controls). Oxidized low-density lipoprotein (oxLDL) was used to induce a human coronary artery endothelial cell (HCAECs) injury model, and loss of function was used to elucidate the role of lncRNA ENST00000609755.1 (lnc-MICALL2-2) in oxLDL-induced HCAECs injury.Results: A total of 320 lncRNAs were found dysregulated in CHD patients (fold change> 2, p < 0.05). The results of a discovery microarray, population verification and HCAEC experiments suggested the lnc-MICALL2-2 is upregulated in CHD subjects and in an oxLDL-induced HCAECs injury model. Conversely, lnc-MICALL2-2 inhibition in vitro attenuated the effects of oxLDL on HCAECs morphology, proliferation, and apoptosis.Conclusion: Elevated expression of lnc-MICALL2-2 is an independent risk factor for CHD, and knockdown subsequently confers protection against early pathological processes of oxLDL-induced CHD.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuan-ming Jiang ◽  
Wei Liu ◽  
Ling Jiang ◽  
Hongbin Chang

Background. Circular RNAs (circRNAs) have been reported to play important roles in the development and progression of papillary thyroid carcinoma (PTC). However, the function and molecular mechanism of circRNA low-density lipoprotein receptor (circLDLR) in the tumorigenesis of PTC remain unknown. Results. In this study, circLDLR was found to be markedly upregulated in PTC tissues and cell lines, and knockdown of circLDLR inhibited PTC cell proliferation, migration, and invasion but induced apoptosis in vitro. Moreover, circLDLR acted as a sponge for miR-637, and miR-637 interference reversed the anticancer effects of circLDLR knockdown on PTC cells. LMO4 was verified to be a target of miR-637; LMO4 upregulation abolished miR-637 mediated inhibition of cell growth and metastasis in PTC. Additionally, circLDLR could indirectly modulate LMO4 via acting as a sponge of miR-637 in PTC cells. Besides that, xenograft analysis showed that circLDLR knockdown suppressed tumor growth in vivo via regulating LMO4 and miR-637. Conclusion. Taken together, these results demonstrated that circLDLR promoted PTC tumorigenesis through miR-637/LMO4 axis, which may provide a novel insight into the understanding of PTC tumorigenesis and be useful in developing potential targets for PTC treatment.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Hiroe Go ◽  
Jin Ah Ryuk ◽  
Hye Won Lee ◽  
In Sil Park ◽  
Ki-Jung Kil ◽  
...  

The present study was conducted to investigate the effect of Sagunja-tang on the lipid related disease in a rat model of menopausal hyperlipidemia and lipid accumulation in methyl-β-cyclodextrin-induced HepG2 cells. Inin vivostudy using menopausal hyperlipidemia rats, Sagunja-tang reduced retroperitoneal and perirenal fat, serum lipids, atherogenic index, cardiac risk factor, media thickness, and nonalcoholic steatohepatitis score, when compared to menopausal hyperlipidemia control rats. In HepG2 cells, Sagunja-tang significantly decreased the lipid accumulation, total cholesterol levels, and low-density/very-low-density lipoprotein levels. Moreover, Sagunja-tang reversed the methyl-β-cyclodextrin-induced decrease in the protein levels of critical molecule involved in cholesterol synthesis, sterol regulatory element binding protein-2, and low-density lipoprotein receptor and inhibited protein levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase as well as activity. Phosphorylation level of AMP-activated protein kinase was stimulated by Sagunja-tang. These results suggest that Sagunja-tang has effect on inhibiting hepatic lipid accumulation through regulation of cholesterol synthesis and AMPK activityin vitro. These observations support the idea that Sagunja-tang is bioavailable bothin vivoandin vitroand could be developed as a preventive and therapeutic agent of hyperlipidemia in postmenopausal females.


Author(s):  
Shahenda, M. Elaby ◽  
Asmaa A. Salem ◽  
Jehan, B. Ali ◽  
A. F. Abdel-Salam

Two lactobacilli strains; Lactobacillus acidophilus ATCC 20079 and Lactobacillus plantarum ATCC 20179 and two bifidobacteria strains; Bifidobacterium bifidum GSGG 5286 and Bifidobacterium longum ATCC 15707 were studied their abilities to reduce the cholesterol content in vitro. It was investigated that the in vivo cholesterol-lowering effect of L. plantarum ATCC 20179, B. bifidum GSGG 5286 and mixture of both probiotics (L. plantarum ATCC20179 and B. bifidum GSGG5286) on hyperlipidaemic rats for 8 weeks. All lactobacilli and bifidobacteria strains assimilate the cholesterol content in laboratory media. It was observed the highest assimilation of cholesterol was in L. plantarum ATCC 20179 and B. bifidum GSGG 5286 strains. In vivo, L. plantarum ATCC 20179  group was more effective in improving serum lipid profile levels [total cholesterol (TC), triglycerides (TG), low density lipoprotein – cholesterol (LDL-C), high density lipoprotein – cholesterol                   (HDL-C), very low density lipoprotein – cholesterol (VLDL-C) and Atherogenic Index (AI)],                      liver enzyme activities (ALT, AST and ALP),  malonaldehyde (MDA), hydrogen peroxide (H2O2) and total antioxidants capacity (TAC) levels than mixed-organisms and B. bifidum groups, respectively of hyperlipidaemic rats. It was concluded that L. plantarum ATCC 20179 showed more                     favourable results than B. bifidum GSGG 5286 in relation to cardiovascular risk factors in hyperlipidaemic rats.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Younghwa Goo ◽  
Pradip Saha ◽  
Larry Chan ◽  
Antoni Paul

Lipid laden macrophages/foam cells are a hallmark of atherosclerotic lesions from early to late stages of development. Macrophages take-up modified low-density lipoprotein (mLDL) particles and store surplus mLDL-derived cholesterol as cholesterol ester (CE) in cytoplasmic lipid droplets (LDs). Accelerating CE hydrolysis from the LDs is a plausible strategy to promote reverse cholesterol transport from the atheroma. However, the identity of the CE hydrolases that function on LDs remains unknown. Previously we identified lipid droplet-associated hydrolase (LDAH) in LDs purified from macrophages and reported that in vitro LDAH regulates CE levels by increasing CE hydrolysis. To determine the relevance of LDAH in atherogenesis, we have generated LDAH knockout (LDAH-/-) mice. Mouse peritoneal macrophages (MPM) isolated from LDAH-/- mice had increased cytoplasmic LDs, increased net CE content, and decreased cholesterol efflux. In atherosclerosis studies, both male and female LDAH-/- mice crossed with apolipoprotein E knockout (apoE-/-) mice fed a Western diet developed larger lesions. Lesions of LDAH-/-/ apoE-/- mice were characterized by increased areas of macrophages containing enlarged cytoplasms with large LDs. Supporting a direct atheroprotective role of LDAH in macrophages, lesions of apoE-/- mice that received bone marrows from LDAH-/-/apoE-/- mice progressed faster than those that received bone marrow cells from LDAH+/+/apoE-/- mice. In qPCR analyses of genes involved in cholesterol homeostasis in macrophages, we found that ABC binding cassette transporters ABCA1 and ABCG1, which mediate cholesterol efflux through the plasma membrane, were consistently decreased in LDAH-/- MPM. Further in vivo gene expression studies on macrophages selectively obtained from lesions using laser capture microdissection are underway. In conclusion, our study suggests that LDAH promotes LD CE hydrolysis and cholesterol efflux from foam cells within the atheroma, and uncovers a potential target to promote reverse cholesterol from arteries as a means of ameliorating atherosclerosis development.


Sign in / Sign up

Export Citation Format

Share Document