scholarly journals Poly(aspartic acid) Biohydrogel as the Base of a New Hybrid Conducting Material

2021 ◽  
Vol 22 (23) ◽  
pp. 13165
Author(s):  
Adrián Fontana-Escartín ◽  
Guillem Ruano ◽  
Fiorella M. Silva ◽  
Francesc Estrany ◽  
Jordi Puiggalí ◽  
...  

In the present study, a composite made of conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), and a biodegradable hydrogel of poly(aspartic acid) (PASP) were electrochemically interpenetrated with poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PHMeDOT) to prepare a new interpenetrated polymer network (IPN). Different cross-linker and PEDOT MPs contents, as well as different electropolymerization times, were studied to optimize the structural and electrochemical properties. The properties of the new material, being electrically conductive, biocompatible, bioactive, and biodegradable, make it suitable for possible uses in biomedical applications.

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4499
Author(s):  
Xiao Hu ◽  
Samuel Ricci ◽  
Sebastian Naranjo ◽  
Zachary Hill ◽  
Peter Gawason

Electrically responsive biomaterials are an important and emerging technology in the fields of biomedical and material sciences. A great deal of research explores the integral role of electrical conduction in normal and diseased cell biology, and material scientists are focusing an even greater amount of attention on natural and hybrid materials as sources of biomaterials which can mimic the properties of cells. This review establishes a summary of those efforts for the latter group, detailing the current materials, theories, methods, and applications of electrically conductive biomaterials fabricated from protein polymers and polysaccharides. These materials can be used to improve human life through novel drug delivery, tissue regeneration, and biosensing technologies. The immediate goal of this review is to establish fabrication methods for protein and polysaccharide-based materials that are biocompatible and feature modular electrical properties. Ideally, these materials will be inexpensive to make with salable production strategies, in addition to being both renewable and biocompatible.


2016 ◽  
Vol 163 (13) ◽  
pp. H1096-H1103 ◽  
Author(s):  
Tugba Soganci ◽  
Hakan Can Soyleyici ◽  
Emrah Giziroglu ◽  
Metin Ak

2021 ◽  
Author(s):  
Marzia Soligo ◽  
Fausto Maria Felsani ◽  
Tatiana Da Ros ◽  
Susanna Bosi ◽  
Elena Pellizzoni ◽  
...  

Carbon nanotubes (CNTs) are currently under active investigation for their use in several biomedical applications, especially in neurological diseases and nervous system injury due to their electrochemical properties.


2018 ◽  
Vol 54 (8) ◽  
pp. 980-983 ◽  
Author(s):  
Xiaoxu Fu ◽  
Wenqiu Zeng ◽  
Ana C. Ramírez-Pérez ◽  
Grzegorz Lisak

Ex situ and in situ 3-D and electrically conducting mapping of the skin topography via electropolymerization of a conducting polymer on a previously sampled skin stamp or directly on the skin of a live human subject were performed here with the intention to be further used in biomedical applications.


2020 ◽  
Vol 65 (5) ◽  
pp. 446
Author(s):  
O. Nadtoka ◽  
N. Kutsevol ◽  
T. Bezugla ◽  
P. Virych ◽  
A. Naumenko

Polyacrylamide and dextran-graft-polyacrylamide hydrogels are prepared and used as nanoreactors and networks for the synthesis of silver nanoparticles (AgNPs). Photochemical generation of AgNPs is carried out under UV-irradiation of Ag+ ions in swollen hydrogels of different cross-linking densities. The obtained hydrogels and hydrogel/AgNPs composites are characterized by TEM, FTIR, and UV–Vis spectroscopy. Swelling studies have shown a relationship between the structure of the hydrogels and their ability to swell. It is shown that the presence of AgNPs in the polymer network leads to a decrease of the swelling capacity. An increase in the cross-linking density leads to an expansion of the AgNPs size distribution for both types of hydrogels. All synthesized hydrogel-silver nanoparticle composites have shown a high activity in the growth retardation of Staphylococcus aureus microorganisms.


e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Joseph Jagur-Grodzinski

AbstractProperties of the electrically conductive polymers (ECPs) enable introduction of several novel applications in various fields, among others, as biomedical materials. Their use as scaffolds for tissue engineering and recovery of damaged neural tissues is especially advantageous. They may also be used for the electrically induced drug release and delivery, and as very sensitive biosensors for clinical applications. Another use is the detection and precision of the biologically important chemical materials. They have been shown to modulate and accelerate activities of the nerve, skeletal, muscle, and bone cells. Cell growth, migration and adhesion, may be stimulated by applying electric potential. Synthesis of DNA, secretion of proteins, and transformations of stem cells may be enhanced. Clinical analysis using ECP-based biosensors make possible the precise determination of the exact composition of individual DNA molecules, and thus enable early detection and treatment of genetically related diseases. Electrochemical (EC) approach of ECP-sensors enables precise determination of concentrations of several biologically important chemicals.


Author(s):  
Rajiv Borah ◽  
Ashok Kumar

This chapter includes detailed review of the research undertaken with conducting polymer (CP) based composites with chitosan (Ch) for tissue engineering till date. The beneficial role of electrically conductive biomaterials has been discussed with the possible strategies to overcome the shortcomings of CP alone through blending with Ch due to its excellent biocompatibility, biodegradability, and bioactivity. Additionally, this embodiment deals with the optimization and characterization of electrically conductive, biocompatible and biodegradable Polyaniline: Chitosan (PAni:Ch) nanocomposites as cell culture substrates for MDA-MB-231 and NIH 3T3 fibroblast in order to examine the combined effect of nanofiber structure and surface modification on cell-biomaterial interactions. The nanocomposites were further checked as a conductive scaffold for electrical stimulation of a neuronal model PC12 cell line in order to explore the potential of the materials in neural tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document