scholarly journals Oncogenic NRAS Accelerates Rhabdomyosarcoma Formation When Occurring within a Specific Time Frame during Tumor Development in Mice

2021 ◽  
Vol 22 (24) ◽  
pp. 13377
Author(s):  
Nada Ragab ◽  
Julia Bauer ◽  
Dominik S. Botermann ◽  
Anja Uhmann ◽  
Heidi Hahn

In the Ptch+/- mouse model for embryonal rhabdomyosarcoma (ERMS), we recently showed that oncogenic (onc) H-, K- or NRAS mutations do not influence tumor growth when induced at the advanced, full-blown tumor stage. However, when induced at the invisible ERMS precursor stage at 4 weeks of age, tumor development was enforced upon oncHRAS and oncKRAS but not by oncNRAS, which instead initiated tumor differentiation. These data indicate that oncRAS-associated processes differ from each other in dependency on the isoform and their occurrence during tumor development. Here, we investigated the outcome of oncNRAS induction at an earlier ERMS precursor stage at 2 weeks of age. In this setting, oncNRAS accelerates tumor growth because it significantly shortens the ERMS-free survival and increases the ERMS incidence. However, it does not seem to alter the differentiation of the tumors. It is also not involved in tumor initiation. Together, these data show that oncNRAS mutations can accelerate tumor growth when targeting immature ERMS precursors within a specific time window, in which the precursors are permissive to the mutation and show that oncNRAS-associated processes differ from each other in dependency on their occurrence during tumor development.

2021 ◽  
Vol 18 (2) ◽  
pp. 115-127
Author(s):  
Zhenxing Feng ◽  
Jiao Zhang ◽  
Yafang Zheng ◽  
Qingzhang Wang ◽  
Xiaochuan Min ◽  
...  

Aim: ASF1 is involved in tumorigenesis. However, its possible role in lung adenocarcinoma (LUAD) is unclear. This study thus explored the role of ASF1A and ASF1B in LUAD. Materials & methods: Data from The Cancer Genome Atlas and Gene Expression Omnibus were employed to investigate ASF1A and ASF1B expression and its roles in LUAD prognosis. Immunohistochemistry was applied to determine the protein expression of ASF1B of 30 LUAD patients. Results: The upregulation of ASF1B in tumor tissues is associated with worse overall survival and progress-free survival and is correlated with advanced tumor stage and tumor development. However, aberrant expression of ASF1A was not found in LUAD and ASF1A was not related to patients’ overall survival and progress-free survival. Conclusion: ASF1B could be a promising prognostic and therapeutic biomarker in LUAD.


Endocrinology ◽  
2014 ◽  
Vol 155 (11) ◽  
pp. 4149-4156 ◽  
Author(s):  
Martin Ullrich ◽  
Ralf Bergmann ◽  
Mirko Peitzsch ◽  
Marc Cartellieri ◽  
Nan Qin ◽  
...  

Abstract Pheochromocytoma (PHEO) is a rare but potentially lethal neuroendocrine tumor arising from catecholamine-producing chromaffin cells. Especially for metastatic PHEO, the availability of animal models is essential for developing novel therapies. For evaluating therapeutic outcome in rodent PHEO models, reliable quantification of multiple organ lesions depends on dedicated small-animal in vivo imaging, which is still challenging and only available at specialized research facilities. Here, we investigated whether whole-body fluorescence imaging and monitoring of urinary free monoamines provide suitable parameters for measuring tumor progression in a murine allograft model of PHEO. We generated an mCherry-expressing mouse PHEO cell line by lentiviral gene transfer. These cells were injected subcutaneously into nude mice to perform whole-body fluorescence imaging of tumor development. Urinary free monoamines were measured by liquid chromatography with tandem mass spectrometry. Tumor fluorescence intensity and urinary outputs of monoamines showed tumor growth–dependent increases (P < .001) over the 30 days of monitoring post-tumor engraftment. Concomitantly, systolic blood pressure was increased significantly during tumor growth. Tumor volume correlated significantly (P < .001) and strongly with tumor fluorescence intensity (rs = 0.946), and urinary outputs of dopamine (rs = 0.952), methoxytyramine (rs = 0.947), norepinephrine (rs = 0.756), and normetanephrine (rs = 0.949). Dopamine and methoxytyramine outputs allowed for detection of lesions at diameters below 2.3 mm. Our results demonstrate that mouse pheochromocytoma (MPC)-mCherry cell tumors are functionally similar to human PHEO. Both tumor fluorescence intensity and urinary outputs of free monoamines provide precise parameters of tumor progression in this sc mouse model of PHEO. This animal model will allow for testing new treatment strategies for chromaffin cell tumors.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i36-i37
Author(s):  
Sheila Alcantara Llaguno ◽  
Inga Nazarenko ◽  
Yuntao Chen ◽  
Daochun Sun ◽  
Gaspare La Rocca ◽  
...  

Abstract To determine the role of microRNA regulation in brain tumor development, we incorporated a conditional allele of the microRNA processing enzyme Dicer to a previously characterized glioma mouse model based on inactivation of the tumor suppressors Nf1, Trp53, and Pten using the Nestin-creERT2 transgene. Loss of Dicer and tumor suppressors at adult ages led to glioma development; however, mutant mice tamoxifen induced at early postnatal ages developed medulloblastoma instead of glioma. The switch in tumor spectrum occurred with 100% penetrance and tumors were histologically indistinguishable from human medulloblastoma (MB). The minimum genetic mutations required for MB formation were Dicer and Trp53. Nf1 was dispensable, while additional loss of Pten produced more invasive tumors and leptomeningeal metastases. The time window for initiation of tumorigenesis was until the 2nd postnatal week, coinciding with the disappearance of the external granule layer (EGL), where cerebellar granule neuron precursors (CGNPs) undergo proliferation. Analysis of pre-symptomatic mutant mice showed proliferative defects and retained cells in the EGL, suggesting that the tumors may arise from CGNPs. However, targeting a subset of CGNPs using Math1-creERT2 did not lead to MB development, suggesting that an earlier EGL precursor may be required for tumorigenesis. Analysis of tumor transcriptome and MB subtype-specific genes and markers show that Dicer tumors most resemble extremely high risk p53-mutated SHH MB. Small RNA and mRNA sequencing analyses showed downregulation of microRNAs and dysregulation of its targets such as N-Myc. These studies demonstrate a role for microRNAs in MB development and show a fully penetrant genetic mouse model of highly metastatic MB.


Pneumologie ◽  
2012 ◽  
Vol 66 (06) ◽  
Author(s):  
K Seidler ◽  
A Sydykov ◽  
S Müller-Brüsselbach ◽  
R Müller ◽  
N Weißmann ◽  
...  

2021 ◽  
Vol 38 (5) ◽  
Author(s):  
Laurie G. Kostecka ◽  
Athen Olseen ◽  
KiChang Kang ◽  
Gonzalo Torga ◽  
Kenneth J. Pienta ◽  
...  

AbstractKinesins play important roles in the progression and development of cancer. Kinesin family member C1 (KIFC1), a minus end-directed motor protein, is a novel Kinesin involved in the clustering of excess centrosomes found in cancer cells. Recently KIFC1 has shown to play a role in the progression of many different cancers, however, the involvement of KIFC1 in the progression of prostate cancer (PCa) is still not well understood. This study investigated the expression and clinical significance of KIFC1 in PCa by utilizing multiple publicly available datasets to analyze KIFC1 expression in patient samples. High KIFC1 expression was found to be associated with high Gleason score, high tumor stage, metastatic lesions, high ploidy levels, and lower recurrence-free survival. These results reveal that high KIFC1 levels are associated with a poor prognosis for PCa patients and could act as a prognostic indicator for PCa patients as well.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
De-Chen Yu ◽  
Xiang-Yi Chen ◽  
Xin Li ◽  
Hai-Yu Zhou ◽  
De-Quan Yu ◽  
...  

AbstractThe spindle and kinetochore-associated protein complex (Ska) is an essential component in chromosome segregation. It comprises three proteins (Ska1, Ska2, and Ska3) with theorized roles in chromosomal instability and tumor development, and its overexpression has been widely reported in a variety of tumors. However, the prognostic significance and immune infiltration of Ska proteins in hepatocellular carcinoma (HCC) are not completely understood. The bioinformatics tools Oncomine, UALCAN, gene expression profiling interactive analysis 2 (GEPIA2), cBioPortal, GeneMANIA, Metascape, and TIMER were used to analyze differential expression, prognostic value, genetic alteration, and immune cell infiltration of the Ska protein complex in HCC patients. We found that the mRNA expression of the Ska complex was markedly upregulated in HCC. High expression of the Ska complex is closely correlated with tumor stage, patient race, tumor grade, and TP53 mutation status. In addition, high expression of the Ska complex was significantly correlated with poor disease-free survival, while the high expression levels of Ska1 and Ska3 were associated with shorter overall survival. The biological functions of the Ska complex in HCC primarily involve the amplification of signals from kinetochores, the mitotic spindle, and (via a MAD2 invasive signal) unattached kinetochores. Furthermore, the expression of the complex was positively correlated with tumor-infiltrating cells. These results may provide new insights into the development of immunotherapeutic targets and prognostic biomarkers for HCC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takashi Nishina ◽  
Yutaka Deguchi ◽  
Daisuke Ohshima ◽  
Wakami Takeda ◽  
Masato Ohtsuka ◽  
...  

AbstractInterleukin (IL)-11 is a member of the IL-6 family of cytokines and is involved in multiple cellular responses, including tumor development. However, the origin and functions of IL-11-producing (IL-11+) cells are not fully understood. To characterize IL-11+ cells in vivo, we generate Il11 reporter mice. IL-11+ cells appear in the colon in murine tumor and acute colitis models. Il11ra1 or Il11 deletion attenuates the development of colitis-associated colorectal cancer. IL-11+ cells express fibroblast markers and genes associated with cell proliferation and tissue repair. IL-11 induces the activation of colonic fibroblasts and epithelial cells through phosphorylation of STAT3. Human cancer database analysis reveals that the expression of genes enriched in IL-11+ fibroblasts is elevated in human colorectal cancer and correlated with reduced recurrence-free survival. IL-11+ fibroblasts activate both tumor cells and fibroblasts via secretion of IL-11, thereby constituting a feed-forward loop between tumor cells and fibroblasts in the tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document