scholarly journals Addition of Trans-Resveratrol-Loaded Highly Concentrated Double Emulsion to Yoghurts: Effect on Physicochemical Properties

2021 ◽  
Vol 23 (1) ◽  
pp. 85
Author(s):  
Rocío Díaz-Ruiz ◽  
Amanda Laca ◽  
Marta Sánchez ◽  
Manuel Ramón Fernández ◽  
María Matos ◽  
...  

Trans-resveratrol (RSV) needs to be encapsulated to maintain its beneficial properties on the human body. This is due to its extreme photosensitivity, short biological half-life, and easy oxidation. In this study, the use of double emulsions for RSV encapsulation and their further application on functional yoghurts was studied. Different types of yoghurts were prepared: with and without RSV and with two types of volumetric emulsion formulations (20/80 and 30/70). In order to study the influence of the addition of double emulsions to the physical properties of the prepared yoghurts, they were characterised fresh and after a month under storage at 4 °C, in terms of droplet size, morphology, stability, rheology, texturometry, colorimetry, and antioxidant capacity. Results obtained showed that the presence of emulsion in the yoghurts produced a generalised decrease in the predominant droplet size (from 48 µm to 15–25 µm) and an increase in the stability. Additionally, a predominantly elastic character was observed. The firmness values obtained were very similar for all the yoghurts analysed and did not suffer important modifications with time. A slight colour variation was observed with storage time in the control sample, whereas a more notable variation in the case of emulsion yoghurts was observed. An appreciable increase of the antioxidant capacity of the final functional yoghurt (100 g) was observed when it contained 5–8 mg of RSV. Encapsulated RSV added to yoghurts presented a larger protection against RSV oxidation compared with free RSV, presenting a larger antioxidant inhibition after one month of storage. Moreover, the antioxidant capacity of yoghurts with encapsulated RSV was not affected under storage, since slight reductions (3%) were registered after one month of storage at 4 °C.

2020 ◽  
Vol 36 (05) ◽  
pp. 879-888
Author(s):  
Ziad Ayyad ◽  
Muhannad Qurie ◽  
Amal Odeh Natshe ◽  
Saleh Sawalha ◽  
Fuad Al-Rimawi

The stability of virgin olive oil (VOO) used as a packing medium for traditional concentrated Yoghurt decreased during time and the product could deteriorate during the storage time. In this investigation, different natural additives such as dried Arum Palaestinum leaves (AP), Tomato Peel (TP) and Chili Pepper (CP) have been used to enhance the quality and stability of packing medium VOO for traditional canned concentrated Yoghurt balls. Parts VOO samples added with natural additives were stored as packing medium for traditional canned concentrated Yoghurt balls. Other part was stored without concentrated Yoghurt in the same storage conditions. All samples were analyzed for their initial quality indexes and during the storage period of six months. At the end of storage, results revealed that the % acidity for all VOO samples used as a packing medium showed a higher value than the samples stored without concentrated Yoghurt balls. On the other side, peroxide values for all stored samples of both parts were less than the control sample without additives. Extinction coefficients (K232, K270) for VOO samples with the natural additives showed increased trend during the storage time, but it didn't exceed the accepted limit for VOO. Total phenol content for all samples were gradually decreased during storage period, whereas samples with the natural additives showed higher values than the controls. All the natural additives (CP, TP, AP) showed a positive trend in enhancing and improving the different VOO quality indexes in our study in particular those samples added with CP during the storage time.


Author(s):  
Urmila Choudhary ◽  
Latha Sabikhi

Effect of three variables in differing concentrations [NaCl (3-5%), polyglycerol polyricinoleate (PGPR) (2-4%) and dairy protein-polysaccharide complexes (Whey protein concentrate(WPC-80)-gum Arabic(GA) and sodium caseinate(SC)-gum Arabic in 1:2 ratio)] on the stability of W1/O/W2 emulsion matrix that was used to encapsulate bitter gourd extract was evaluated. The double emulsion matrix was characterized by apparent viscosity, zeta potential, turbidity and sedimentation stability by visual appearance. The physical parameters of the double emulsion matrix were very highly significantly (p < 0.001) affected by all variables such as the concentration of salt, PGPR and complex (WPC-GA and SC-P) as well as their interactions. The double emulsions prepared with WPC-GA became unstable immediately after preparation or after one day of preparation. SC-GA stabilized double emulsions were found more stable than WPC-GA stabilized emulsions. A double emulsion containing 5% NaCl, 2% PGPR and 16.5% SC-GA were found most stable (10 days at 37°C) in comparison to other combinations used.


2021 ◽  
Vol 5 (2) ◽  
pp. 21
Author(s):  
Nico Leister ◽  
Heike P. Karbstein

Double emulsions are a promising formulation for encapsulation and targeted release in pharmaceutics, cosmetics and food. An inner water phase is dispersed in an oil phase, which is again emulsified in a second water phase. The encapsulated inner water phase can be released via diffusion or via coalescence, neither of which is desired during storage but might be intended during application. The two interfaces in a double emulsion are stabilized by a hydrophilic and a lipophilic surfactant, to prevent the coalescence of the outer and the inner emulsion, respectively. This study focuses on the influence of the hydrophilic surfactant on the release of inner water or actives encapsulated therein via coalescence of the inner water droplet with the outer O–W2 interface. Since coalescence and diffusion are difficult to distinguish in double emulsions, single-droplet experiments were used to quantify differences in the stability of inner droplets. Different lipophilic (PGPH and PEG-30 dipolyhydroxylstearate) and hydrophilic surfactants (ethoxylates, SDS and polymeric) were used and resulted in huge differences in stability. A drastic decrease in stability was found for some combinations, while other combinations resulted in inner droplets that could withstand coalescence longer. The destabilization effect of some hydrophilic surfactants depended on their concentration, but was still present at very low concentrations. A huge spread of the coalescence time for multiple determinations was observed for all formulations and the necessary statistical analysis is discussed in this work. The measured stabilities of single droplets are in good accordance with the stability of double emulsions for similar surfactant combinations found in literature. Therefore, single droplet experiments are suggested for a fast evaluation of potentially suitable surfactant combinations for future studies on double-emulsion stability.


2020 ◽  
Vol 4 (1) ◽  
pp. 8
Author(s):  
Nico Leister ◽  
Heike P. Karbstein

Double emulsions are very promising for various applications in pharmaceutics, cosmetics, and food. Despite lots of published research, only a few products have successfully been marketed due to immense stability problems. This review describes approaches on how to characterize the stability of double emulsions. The measurement methods are used to investigate the influence of the ingredients or the process on the stability, as well as of the environmental conditions during storage. The described techniques are applied either to double emulsions themselves or to model systems. The presented analysis methods are based on microscopy, rheology, light scattering, marker detection, and differential scanning calorimetry. Many methods for the characterization of double emulsions focus only on the release of the inner water phase or of a marker encapsulated therein. Analysis methods for a specific application rarely give information on the actual mechanism, leading to double emulsion breakage. In contrast, model systems such as simple emulsions, microfluidic emulsions, or single-drop experiments allow for a systematic investigation of diffusion and coalescence between the individual phases. They also give information on the order of magnitude in which they contribute to the failure of the overall system. This review gives an overview of various methods for the characterization of double emulsion stability, describing the underlying assumptions and the information gained. With this review, we intend to assist in the development of stable double emulsion-based products.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Damien A. Sebben ◽  
Stephanie V. MacWilliams ◽  
Long Yu ◽  
Patrick T. Spicer ◽  
Vincent Bulone ◽  
...  

Water-in-oil-in-water (W1/O/W2) emulsions (double emulsions) have often been used for the encapsulation of bioactive compounds such as anthocyanins. Instability of both anthocyanins and double emulsions creates a need for a tailored composition of the aqueous phase. In this work, double emulsions with a gelled internal water phase were produced and monitored over a 20-day storage period. The effect of the electrolyte phase composition (varying electrolyte components, including adipic acid, citric acid, and varying concentration of potassium chloride (KCl)) on anthocyanin and double emulsion stability was analysed using colour analysis, droplet sizing, and emulsion rheology. The effect of electrolytes on colour retention was shown to differ between the primary W1/O emulsion and the secondary W1/O/W2 emulsion. Furthermore, droplet size analysis and emulsion rheology highlighted significant differences in the stability and structural behaviour of the emulsions as a function of electrolyte composition. In terms of colour retention and emulsion stability, a citrate-buffered system performed best. The results of this study highlight the importance of strict control of aqueous phase constituents to prevent anthocyanin degradation and maximise double emulsion stability. Additional experiments analysed the effect of pectin chemistry on the anthocyanin colour retention and leakage, finding no conclusive difference between the unmodified and amidated pectin.


2020 ◽  
Vol 37 (3) ◽  
pp. 83-90
Author(s):  
T.Z. Mutallapov ◽  

The article presents the results of evaluating the growth of Scots pine in the Baymak forest area. The analysis of forestry and taxation indicators of Scots pine crops on the studied sample areas is carried out, and a comparative assessment of the growth of forest crops growing in different types of forest is given. Increased competition in plantings leads to the natural decline of stunted trees, which is the result of differentiation in the stand. As a result, its structure changes, the number of large trees increases, and, accordingly, the stability of the forest ecosystem increases. In this regard, the appearance of the tree distribution curve by thickness levels also changes. It becomes more "flat", and its competitive load is more evenly distributed over the entire structure of the stand, and competition is weakened.


2019 ◽  
Vol 14 (3) ◽  
pp. 211-225 ◽  
Author(s):  
Ming Fang ◽  
Xiujuan Lei ◽  
Ling Guo

Background: Essential proteins play important roles in the survival or reproduction of an organism and support the stability of the system. Essential proteins are the minimum set of proteins absolutely required to maintain a living cell. The identification of essential proteins is a very important topic not only for a better comprehension of the minimal requirements for cellular life, but also for a more efficient discovery of the human disease genes and drug targets. Traditionally, as the experimental identification of essential proteins is complex, it usually requires great time and expense. With the cumulation of high-throughput experimental data, many computational methods that make useful complements to experimental methods have been proposed to identify essential proteins. In addition, the ability to rapidly and precisely identify essential proteins is of great significance for discovering disease genes and drug design, and has great potential for applications in basic and synthetic biology research. Objective: The aim of this paper is to provide a review on the identification of essential proteins and genes focusing on the current developments of different types of computational methods, point out some progress and limitations of existing methods, and the challenges and directions for further research are discussed.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1198
Author(s):  
Elías Arilla ◽  
Purificación García-Segovia ◽  
Javier Martínez-Monzó ◽  
Pilar Codoñer-Franch ◽  
Marta Igual

Resistant maltodextrin (RMD) is a water-soluble and fermentable functional fiber. RMD is a satiating prebiotic, reducer of glucose and triglycerides in the blood, and promoter of good gut health, and its addition to food is increasingly frequent. Therefore, it is necessary to study its potential effects on intrinsic bioactive compounds of food and their bioaccessibility. The aim of this study was to evaluate the effect of adding RMD on the bioactive compounds of pasteurized orange juice with and without pulp, and the bioaccessibility of such compounds. RMD was added at different concentrations: 0 (control sample), 2.5%, 5%, and 7.5%. Ascorbic acid (AA) and vitamin C were analyzed using HPLC, whereas total phenols, total carotenoids (TC), and antioxidant capacity were measured using spectrophotometry. After that, sample in vitro digestibility was assessed using the standardized static in vitro digestion method. The control orange juice with pulp presented significantly higher values of bioactive compounds and antioxidant capacity than the control orange juice without pulp (p < 0.05). RMD addition before the juice pasteurization process significantly protected all bioactive compounds, namely total phenols, TC, AA, and vitamin C, as well as the antioxidant capacity (AC) (p < 0.05). Moreover, this bioactive compound protective effect was higher when higher RMD concentrations were added. However, RMD addition improved phenols and vitamin C bioaccessibility but decreased TC and AA bioaccessibility. Therefore, the AC value of samples after gastrointestinal digestion was slightly decreased by RMD addition. Moreover, orange pulp presence decreased total phenols and TC bioaccessibility but increased AA and vitamin C bioaccessibility.


Sign in / Sign up

Export Citation Format

Share Document