scholarly journals Graphene Enhances Actin Filament Assembly Kinetics and Modulates NIH-3T3 Fibroblast Cell Spreading

2022 ◽  
Vol 23 (1) ◽  
pp. 509
Author(s):  
Jinho Park ◽  
Pavlo Kravchuk ◽  
Adithi Krishnaprasad ◽  
Tania Roy ◽  
Ellen Hyeran Kang

Actin plays critical roles in various cellular functions, including cell morphogenesis, differentiation, and movement. The assembly of actin monomers into double-helical filaments is regulated in surrounding microenvironments. Graphene is an attractive nanomaterial that has been used in various biomaterial applications, such as drug delivery cargo and scaffold for cells, due to its unique physical and chemical properties. Although several studies have shown the potential effects of graphene on actin at the cellular level, the direct influence of graphene on actin filament dynamics has not been studied. Here, we investigate the effects of graphene on actin assembly kinetics using spectroscopy and total internal reflection fluorescence microscopy. We demonstrate that graphene enhances the rates of actin filament growth in a concentration-dependent manner. Furthermore, cell morphology and spreading are modulated in mouse embryo fibroblast NIH-3T3 cultured on a graphene surface without significantly affecting cell viability. Taken together, these results suggest that graphene may have a direct impact on actin cytoskeleton remodeling.

2020 ◽  
Vol 16 (3) ◽  
pp. 358-362
Author(s):  
Renan S. Teixeira ◽  
Paulo H.D. Carvalho ◽  
Jair A.K. Aguiar ◽  
Valquíria P. Medeiros ◽  
Ademar A. Da Silva Filho ◽  
...  

Background: Arctigenin is a lignan found in Arctium lappa L. (Asteraceae) that displays anti-inflammatory activities. Previous studies showed that the crude extract of A. Lappa has antitumor activity in human liver carcinoma, lung and stomach cancer cells. The aim of this study was to obtain arctigenin from A. lappa L., as well as to evaluate its antiproliferative effects in cells of liver carcinoma (HepG2) and fibroblasts (NIH/3T3). Methods: Arctigenin was obtained from the hydrolysis of arctiin, which was isolated from the crude extract of A. lappa. The effects of arctigenin and arctiin on HepG2 cell viability and cell adhesion were analyzed by MTT method. Adhesion assay was also carried out to evaluate the antitumor activity. Results: Our results showed that the analytical process to obtain arctigenin was fast and easy. In vitro experiments showed that arctigenin (107-269 μM) decreased HepG2 cells viability and did not cause cytotoxicity on NIH/3T3 cells. Arctigenin (27-269 μM) demonstrated anti-adhesion in HepG2 cells in a concentration-dependent manner, when compared with control. Conclusion: These results suggest a promising pharmacological activity for arctigenin as an antiproliferative compound.


2015 ◽  
Vol 26 (3) ◽  
pp. 495-505 ◽  
Author(s):  
Meredith O. Sweeney ◽  
Agnieszka Collins ◽  
Shae B. Padrick ◽  
Bruce L. Goode

Branched actin filament networks in cells are assembled through the combined activities of Arp2/3 complex and different WASP/WAVE proteins. Here we used TIRF and electron microscopy to directly compare for the first time the assembly kinetics and architectures of actin filament networks produced by Arp2/3 complex and dimerized VCA regions of WAVE1, WAVE2, or N-WASP. WAVE1 produced strikingly different networks from WAVE2 or N-WASP, which comprised unexpectedly short filaments. Further analysis showed that the WAVE1-specific activity stemmed from an inhibitory effect on filament elongation both in the presence and absence of Arp2/3 complex, which was observed even at low stoichiometries of WAVE1 to actin monomers, precluding an effect from monomer sequestration. Using a series of VCA chimeras, we mapped the elongation inhibitory effects of WAVE1 to its WH2 (“V”) domain. Further, mutating a single conserved lysine residue potently disrupted WAVE1's inhibitory effects. Taken together, our results show that WAVE1 has unique activities independent of Arp2/3 complex that can govern both the growth rates and architectures of actin filament networks. Such activities may underlie previously observed differences between the cellular functions of WAVE1 and WAVE2.


2019 ◽  
Vol 171 (1) ◽  
pp. 221-234 ◽  
Author(s):  
Hao Chen ◽  
Helia Seifikar ◽  
Nicholas Larocque ◽  
Yvonne Kim ◽  
Ibrahim Khatib ◽  
...  

Abstract Although the ramifications associated with polybrominated diphenyl ethers (PBDEs) exposures during human pregnancy have yet to be determined, increasing evidence in humans and animal models suggests that these compounds cause neurodevelopmental toxicity. Human embryonic stem cells (hESCs) models can be used to study the effects of environmental chemicals throughout the successive stages of neuronal development. Here, using a hESC differentiation model, we investigated the effects of common PBDE congeners (BDE-47 or -99) on the successive stages of early neuronal development. First, we determined the points of vulnerability to PBDEs across 4 stages of in vitro neural development by using assays to assess for cytotoxicity. Differentiated neural progenitors were identified to be more sensitive to PBDEs than their less differentiated counterparts. In follow-up investigations, we observed BDE-47 to inhibit functional processes critical for neurogenesis (eg, proliferation, expansion) in hESC-derived neural precursor cells (NPCs) at sub-lethal concentrations. Finally, to determine the mechanism(s) underlying PBDE-toxicity, we conducted global transcriptomic and methylomic analyses of BDE-47. We identified 589 genes to be differentially expressed due to BDE-47 exposure, including molecules involved in oxidative stress mediation, cell cycle, hormone signaling, steroid metabolism, and neurodevelopmental pathways. In parallel analyses, we identified a broad significant increase in CpG methylation. In summary our results suggest, on a cellular level, PBDEs induce human neurodevelopmental toxicity in a concentration-dependent manner and sensitivity to these compounds is dependent on the developmental stage of exposure. Proposed mRNA and methylomic perturbations may underlie toxicity in early embryonic neuronal populations.


2020 ◽  
Vol 21 (21) ◽  
pp. 7813
Author(s):  
Kiho Lee ◽  
Iliana Escobar ◽  
Yeeun Jang ◽  
Wooseong Kim ◽  
Frederick M. Ausubel ◽  
...  

Sphingosine-1-phophate (S1P) is a sphingolipid-derived signaling molecule that controls diverse cellular functions including cell growth, homeostasis, and stress responses. In a variety of metazoans, cytosolic S1P is transported into the extracellular space where it activates S1P receptors in a concentration-dependent manner. In the free-living nematode Caenorhabditis elegans, the spin-2 gene, which encodes a S1P transporter, is activated during Gram-positive or Gram-negative bacterial infection of the intestine. However, the role during infection of spin-2 and three additional genes in the C. elegans genome encoding other putative S1P transporters has not been elucidated. Here, we report an evolutionally conserved function for S1P and a non-canonical role for S1P transporters in the C. elegans immune response to bacterial pathogens. We found that mutations in the sphingosine kinase gene (sphk-1) or in the S1P transporter genes spin-2 or spin-3 decreased nematode survival after infection with Pseudomonas aeruginosa or Enterococcus faecalis. In contrast to spin-2 and spin-3, mutating spin-1 leads to an increase in resistance to P. aeruginosa. Consistent with these results, when wild-type C. elegans were supplemented with extracellular S1P, we found an increase in their lifespan when challenged with P. aeruginosa and E. faecalis. In comparison, spin-2 and spin-3 mutations suppressed the ability of S1P to rescue the worms from pathogen-mediated killing, whereas the spin-1 mutation had no effect on the immune-enhancing activity of S1P. S1P demonstrated no antimicrobial activity toward P. aeruginosa and Escherichia coli and only minimal activity against E. faecalis MMH594 (40 µM). These data suggest that spin-2 and spin-3, on the one hand, and spin-1, on the other hand, transport S1P across cellular membranes in opposite directions. Finally, the immune modulatory effect of S1P was diminished in C. eleganssek-1 and pmk-1 mutants, suggesting that the immunomodulatory effects of S1P are mediated by the p38 MAPK signaling pathway.


2005 ◽  
Vol 289 (2) ◽  
pp. C425-C436 ◽  
Author(s):  
Bok Hee Choi ◽  
Jung-Ah Park ◽  
Kyung-Ryoul Kim ◽  
Ggot-Im Lee ◽  
Yong-Tae Lee ◽  
...  

The action of cytochalasins, actin-disrupting agents on human Kv1.5 channel (hKv1.5) stably expressed in Ltk− cells was investigated using the whole cell patch-clamp technique. Cytochalasin B inhibited hKv1.5 currents rapidly and reversibly at +60 mV in a concentration-dependent manner with an IC50 of 4.2 μM. Cytochalasin A, which has a structure very similar to cytochalasin B, inhibited hKv1.5 (IC50 of 1.4 μM at +60 mV). Pretreatment with other actin filament disruptors cytochalasin D and cytochalasin J, and an actin filament stabilizing agent phalloidin had no effect on the cytochalasin B-induced inhibition of hKv1.5 currents. Cytochalasin B accelerated the decay rate of inactivation for the hKv1.5 currents. Cytochalasin B-induced inhibition of the hKv1.5 channels was voltage dependent with a steep increase over the voltage range of the channel's opening. However, the inhibition exhibited voltage independence over the voltage range in which channels are fully activated. Cytochalasin B produced no significant effect on the steady-state activation or inactivation curves. The rate constants for association and dissociation of cytochalasin B were 3.7 μM/s and 7.5 s−1, respectively. Cytochalasin B produced a use-dependent inhibition of hKv1.5 current that was consistent with the slow recovery from inactivation in the presence of the drug. Cytochalasin B (10 μM) also inhibited an ultrarapid delayed rectifier K+ current ( IK,ur) in human atrial myocytes. These results indicate that cytochalasin B primarily blocks activated hKv1.5 channels and endogenous IK,ur in a cytoskeleton-independent manner as an open-channel blocker.


2000 ◽  
Vol 11 (10) ◽  
pp. 3315-3327 ◽  
Author(s):  
Matthew Wawersik ◽  
Pierre A. Coulombe

Injury to the skin results in an induction of keratins K6, K16, and K17 concomitant with activation of keratinocytes for reepithelialization. Forced expression of human K16 in skin epithelia of transgenic mice causes a phenotype that mimics several aspects of keratinocyte activation. Two types of transgenic keratinocytes, with forced expression of either human K16 or a K16-C14 chimeric cDNA, were analyzed in primary culture to assess the impact of K16 expression at a cellular level. High K16-C14-expressing and low K16-expressing transgenic keratinocytes behave similar to wild type in all aspects tested. In contrast, high K16-expressing transgenic keratinocytes show alterations in plating efficiency and calcium-induced differentiation, but proliferate normally. Migration of keratinocytes is reduced in K16 transgenic skin explants compared with controls. Finally, a subset of high K16-expressing transgenic keratinocytes develops major changes in the organization of keratin filaments in a time- and calcium concentration-dependent manner. These changes coincide with alterations in keratin content while the steady-state levels of K16 protein remain stable. We conclude that forced expression of K16 in progenitor skin keratinocytes directly impacts properties such as adhesion, differentiation, and migration, and that these effects depend upon determinants contained within its carboxy terminus.


e-Polymers ◽  
2014 ◽  
Vol 14 (5) ◽  
pp. 297-304
Author(s):  
Guo-xun Chang ◽  
Ke-feng Ren ◽  
Yi-xiu Zhao ◽  
Yi-xin Sun ◽  
Jian Ji

AbstractIn addition to the topographical features and chemical properties of substrates, the mechanical properties are known as a vital regulator of cellular processes such as adhesion, proliferation, and migration, and have received considerable attention in recent years. In this work, electrochemical redox multilayers made of ferrocene-modified poly(ethylenimine) (PEI-Fc) and deoxyribonucleic acid (DNA) with controlled stiffness were used to investigate the effects of the mechanical properties of multilayers on fibroblast cell (NIH/3T3) behaviors. Redox PEI-Fc plays an essential role in inducing swelling in multilayers under an electrochemical stimulus, resulting in distinct changes in the stiffness of the multilayers. The Young’s modulus varied from 2.05 to 1.07 MPa for the (PEI-Fc/DNA) multilayers by changing the oxidation time of the electrochemical treatment. We demonstrated that the adhesion, proliferation, and migration of fibroblast cells depended on the multilayers’ stiffness. These results indicate that cell behaviors can be precisely controlled by electrochemical treatment, which provides a new way to prepare thin films with tunable mechanical properties with potential biomedical applications.


1998 ◽  
Vol 66 (8) ◽  
pp. 3775-3782 ◽  
Author(s):  
Roney O. Laine ◽  
Katherine L. Phaneuf ◽  
Casey C. Cunningham ◽  
David Kwiatkowski ◽  
Toshi Azuma ◽  
...  

ABSTRACT The actin-based motility of Listeria monocytogenesrequires the addition of actin monomers to the barbed or plus ends of actin filaments. Immunofluorescence micrographs have demonstrated that gelsolin, a protein that both caps barbed ends and severs actin filaments, is concentrated directly behind motile bacteria at the junction between the actin filament rocket tail and the bacterium. In contrast, CapG, a protein that strictly caps actin filaments, fails to localize near intracellular Listeria. To explore the effect of increasing concentrations of gelsolin on bacterial motility, NIH 3T3 fibroblasts stably transfected with gelsolin cDNA were infected withListeria. The C5 cell line containing 2.25 times control levels of gelsolin supported significantly higher velocities of bacterial movement than did control fibroblasts (mean ± standard error of the mean, 0.09 ± 0.003 μm/s [n = 176] versus 0.05 ± 0.003 μm/s [n = 65]). The rate of disassembly of the Listeria-induced actin filament rocket tail was found to be independent of gelsolin content. Therefore, if increases in gelsolin content result in increases inListeria-induced rocket tail assembly rates, a positive correlation between gelsolin content and tail length would be expected. BODIPY-phalloidin staining of four different stably transfected NIH 3T3 fibroblast cell lines confirmed this expectation (r = 0.92). Rocket tails were significantly longer in cells with a high gelsolin content. Microinjection of gelsolin 1/2 (consisting of the amino-terminal half of native gelsolin) also increased bacterial velocity by more than 2.2 times. Microinjection of CapG had no effect on bacterial movement. Cultured skin fibroblasts derived from gelsolin-null mice were capable of supporting intracellularListeria motility at velocities comparable to those supported by wild-type skin fibroblasts. These experiments demonstrated that the surface of Listeria contains a polymerization zone that can block the barbed-end-capping activity of both gelsolin and CapG. The ability of Listeria to uncap actin filaments combined with the severing activity of gelsolin can accelerate actin-based motility. However, gelsolin is not absolutely required for the actin-based intracellular movement of Listeria because its function can be replaced by other actin regulatory proteins in gelsolin-null cells, demonstrating the functional redundancy of the actin system.


Author(s):  
Arnab Kumar De ◽  
Narottam Dey ◽  
Malay Kumar Adak

<p>The present paper holds the accountability of an aquatic fern R.Br. for biotechnological implication. Azolla pinnata In an artificial<br />laboratory condition Azolla plants responded well in hyper accumulation of lead in a concentration dependent manner however, within a<br />threshold value. In accompany with metal bioaccumulation plants responded a regulated growth performances with relative growth rate<br />(RGR) and net assimilation rate (NAR). The plants responded well with a chemical elicitors like polyamine in response to metal<br />quenching ability. At the cellular level the phytotoxicity of the plant is mitigated by both non-enzymatic and enzymatic cascades. It is an<br />advantage of the plants to down regulate reactive oxygen species (ROS) - superoxide (O ) and peroxide (H O ) in a moderate level as 2 2 2<br />-<br />compare to higher plants and modulated with polyamine. The diversity in this species was also recorded for few gene expression related to<br />antioxidation. Fern under lead toxicity displayed well in protein polymorphism for peroxides with variations. The responses of this<br />species for metal hyper accumulation and over expressed physiological traits are discussed in light of phytoremidiation.<br />Keywords: Azolla; Heavy Metals; Oxidative Stress; Antioxidative enzymes; Polyamine</p><p> </p><p><span>DOI: </span><a id="pub-id::doi" href="http://dx.doi.org/10.21756/cba.v1i1.10960">http://dx.doi.org/10.21756/cba.v1i1.10960</a></p>


1999 ◽  
Vol 18 (2) ◽  
pp. 91-96 ◽  
Author(s):  
I. Pala ◽  
A. Srinivasan ◽  
P. J. S. Vig ◽  
D. Desaiah

Calmodulin (CaM), a calcium-binding protein, is found in high concentrations in mammalian brain where it plays a pivotal role in a large number of cellular functions. Protein kinase C (PKC), a multifunctional cytosolic enzyme, in the presence of both Ca2+ and phospholipids, transduce extracellular signals into intracellu-lar events. Both CaM and PKC are partially involved in maintaining Ca2+ homeostasis in the cell. Any fluctuations in the intracel-lular Ca2+ can modulate cellular functions and may contribute to neuronal dysfunction. Hence, the present investigation was initiated to study the effects of some selected penicillium (naturally occurring tremorgenic) mycotoxins like secalonic acid, citreoviridin, and verruculogen on CaM activity, active conformation of CaM and PKC activity. Stimulation of CaM-deflcient bovine brain 3′-5′ phosphodieste rase (PDE) indicated CaM activity. The modification of CaM active conformation was studied by the binding of fluorescent probe N-phenyl-1-napthylamine (NPN) to CaM. Alterations in the fluorescence of dansyl-CaM was used to study the effect of these compounds on complex formation between CaM and PDE. Rat brain cytosolic PKC was studied using 32P-ATP as a measure of altered protein phosphorylation. The concentrations of mycotoxins used were in the range of 10 to 50 μM. All three mycotoxins inhibited CaM-stimulated PDE activity in a concentration-dependent manner. Citreoviridin and secalonic acid inhibited NPN fluorescence and Ca2+-dependent complex formation of dansyl-CaM and PDE. The IC50 values for NPN fluorescence of citreoviridin and secalonic acid were 13 μM and 19 μM respectively. However, verruculogen showed little effect on NPN fluorescence and the Ca2+-dependent complex formation of dansyl-CaM and PDE. These mycotoxins also inhibited PKC activity in a concentration-dependent manner with IC50 values of 19.8, 25.7, and 38.4 μM for secalonic acid, citreoviridin, and verruculogen, respectively. The results of our study suggest that these mycotoxins at very low concentrations are interacting with CaM and PKC. Such an effect could lead to impairment of neurotransmission and result in neurotoxicity.


Sign in / Sign up

Export Citation Format

Share Document