scholarly journals In the Model Host Caenorhabditis elegans, Sphingosine-1-Phosphate-Mediated Signaling Increases Immunity toward Human Opportunistic Bacteria

2020 ◽  
Vol 21 (21) ◽  
pp. 7813
Author(s):  
Kiho Lee ◽  
Iliana Escobar ◽  
Yeeun Jang ◽  
Wooseong Kim ◽  
Frederick M. Ausubel ◽  
...  

Sphingosine-1-phophate (S1P) is a sphingolipid-derived signaling molecule that controls diverse cellular functions including cell growth, homeostasis, and stress responses. In a variety of metazoans, cytosolic S1P is transported into the extracellular space where it activates S1P receptors in a concentration-dependent manner. In the free-living nematode Caenorhabditis elegans, the spin-2 gene, which encodes a S1P transporter, is activated during Gram-positive or Gram-negative bacterial infection of the intestine. However, the role during infection of spin-2 and three additional genes in the C. elegans genome encoding other putative S1P transporters has not been elucidated. Here, we report an evolutionally conserved function for S1P and a non-canonical role for S1P transporters in the C. elegans immune response to bacterial pathogens. We found that mutations in the sphingosine kinase gene (sphk-1) or in the S1P transporter genes spin-2 or spin-3 decreased nematode survival after infection with Pseudomonas aeruginosa or Enterococcus faecalis. In contrast to spin-2 and spin-3, mutating spin-1 leads to an increase in resistance to P. aeruginosa. Consistent with these results, when wild-type C. elegans were supplemented with extracellular S1P, we found an increase in their lifespan when challenged with P. aeruginosa and E. faecalis. In comparison, spin-2 and spin-3 mutations suppressed the ability of S1P to rescue the worms from pathogen-mediated killing, whereas the spin-1 mutation had no effect on the immune-enhancing activity of S1P. S1P demonstrated no antimicrobial activity toward P. aeruginosa and Escherichia coli and only minimal activity against E. faecalis MMH594 (40 µM). These data suggest that spin-2 and spin-3, on the one hand, and spin-1, on the other hand, transport S1P across cellular membranes in opposite directions. Finally, the immune modulatory effect of S1P was diminished in C. eleganssek-1 and pmk-1 mutants, suggesting that the immunomodulatory effects of S1P are mediated by the p38 MAPK signaling pathway.

2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1631-1639
Author(s):  
Yo Suzuki ◽  
Gail A Morris ◽  
Min Han ◽  
William B Wood

Abstract The signaling pathway initiated by the TGF-β family member DBL-1 in Caenorhabditis elegans controls body shape in a dose-dependent manner. Loss-of-function (lf) mutations in the dbl-1 gene cause a short, small body (Sma phenotype), whereas overexpression of dbl-1 causes a long body (Lon phenotype). To understand the cellular mechanisms underlying these phenotypes, we have isolated suppressors of the Sma phenotype resulting from a dbl-1(lf) mutation. Two of these suppressors are mutations in the lon-3 gene, of which four additional alleles are known. We show that lon-3 encodes a collagen that is a component of the C. elegans cuticle. Genetic and reporter-gene expression analyses suggest that lon-3 is involved in determination of body shape and is post-transcriptionally regulated by the dbl-1 pathway. These results support the possibility that TGF-β signaling controls C. elegans body shape by regulating cuticle composition.


Author(s):  
Ayano Tsuru ◽  
Yumi Hamazaki ◽  
Shuta Tomida ◽  
Mohammad Shaokat Ali ◽  
Eriko Kage-Nakadai

Abstract Cutibacterium acnes plays roles in both acne disease and healthy skin ecosystem. We observed that mutations in the tir-1/SARM1 and p38 MAPK cascade genes significantly shortened Caenorhabditis elegans lifespan upon Cutibacterium acnes SK137 infection. Antimicrobial molecules were induced by SK137 in a TIR-1-dependent manner. These results suggest that defense responses against SK137 involve the TIR-1-p38 MAPK pathway in Caenorhabditis elegans.


Parasitology ◽  
2018 ◽  
Vol 146 (3) ◽  
pp. 314-320 ◽  
Author(s):  
Veeren M Chauhan ◽  
David I Pritchard

AbstractCaenorhabditis elegans is a free-living nematode that resides in soil and typically feeds on bacteria. We postulate that haematophagic C. elegans could provide a model to evaluate vaccine responses to intestinal proteins from hematophagous nematode parasites, such as Necator americanus. Human erythrocytes, fluorescently labelled with tetramethylrhodamine succinimidyl ester, demonstrated a stable bright emission and facilitated visualization of feeding events with fluorescent microscopy. C. elegans were observed feeding on erythrocytes and were shown to rupture red blood cells upon capture to release and ingest their contents. In addition, C. elegans survived equally on a diet of erythrocytes. There was no statistically significant difference in survival when compared with a diet of Escherichia coli OP50. The enzymes responsible for the digestion and detoxification of haem and haemoglobin, which are key components of the hookworm vaccine, were found in the C. elegans intestine. These findings support our postulate that free-living nematodes could provide a model for the assessment of neutralizing antibodies to current and future hematophagous parasite vaccine candidates.


Author(s):  
Edrees Khan Rahmatzada ◽  
Prof. Paras Nath Yadav ◽  
Dr. Yuba Raj Pokharel

Thiosemicarbazone have the antiviral, antibacterial, antifungal, and anticancer effects. 3-OH-Me-TSC inhibited the cell viability of HepG-2 cells by CV assay in a concentration dependent manner (control, 1μM, 3μM, 10μM, 30μM, and 100μM) with IC50 value of 9.587622μM. Further colony formation assay demonstrated that 3-OH-Me-TSC inhibits colony number and size of HepG-2. Wound healing assay exhibited that 3-OH-Me-TSC inhibit the migration of HepG-2 cells. DAPI staining showed that 3-OH-Me-TSC inhibited proliferation of HepG-2 cells in 30μM and 100μM concentrations respectively. 3-OH-Me-TSC inhibited VEGF, p38 alpha, C-JUN, BECN-1, ERK, NF-KB, in HepG-2 cells. We found that 3-OH-Me-TSC inhibit proliferation of HepG-2 cells by inhibiting MAPK signaling pathway, 3-OH-Me-TSC can be developed as future chemotherapeutic agent for treatment of hepatocellular carcinoma after the evaluation of this compounds in more cancer cells an in vivo model.


Author(s):  
Roman Farooq Alvi ◽  
Bilal Aslam ◽  
Muhammad Hidayat Rasool ◽  
Saima Muzammil ◽  
Abu Baker Siddique ◽  
...  

Background. The term “persisters” refers to a small bacterial population that persists during treatment with high antibiotic concentration or dose in the absence of genetic resistance. The present study was designed to investigate the transcriptional response in indigenous Klebsiella pneumoniae under the ciprofloxacin stress. Methods. Isolation and identification of K. pneumoniae were carried out through standard microbiological protocols. The characterization of quinolone resistance was performed by estimating the quinolone susceptibility testing, MIC estimation, and detecting the QRDR and PMQR. Transcriptional response of the isolates to ciprofloxacin was determined using qPCR. Results. Among 34 isolates, 23 (67%) were resistant to ciprofloxacin. Both QRDR (gyrA and gyrB) and PMQR (qnrA, qnrB, and qnrS) were detected in the isolates, and all were found resistant to ciprofloxacin. The mRNA levels of both mutS and euTu under the influence of ciprofloxacin were significantly increased. On ciprofloxacin exposure, the mRNA levels of the DNA damage response element (mutS) were raised in a time-dependent fashion. K. pneumoniae showed high-level resistance to ciprofloxacin in the presence of mutations in QRDR and PMQR genes. Conclusion. The transcriptional response revealed the upregulation of DNA repair and protein folding elements (mutS and euTu) in ciprofloxacin stress and delayed cell division. The ciprofloxacin was found to trigger various stress responses in a time- and concentration-dependent manner.


Author(s):  
Mengjiao Hao ◽  
Zhikang Zhang ◽  
Yijun Guo ◽  
Huihao Zhou ◽  
Qiong Gu ◽  
...  

Abstract AMP-activated protein kinase (AMPK) is involved in life span maintenance, stress responses, and germ cell cycle arrest upon dauer entry. AMPK is currently considered a promising target for preventing age-related diseases. Rubidium is one of the trace elements in human body. As early as the 1970s, RbCl has been was reported to have neuroprotective effects. In this work, we report the anti-aging effect of RbCl in Caenorhabditis elegans. Specifically, we reveal that (1) RbCl does increase the lifespan and enhance stress resistance in C. elegans without disturbing their fecundity. (2) RbCl induces superoxide dismutase (SOD) expression, which is essential for its anti-aging and anti-stress effect. (3) AAK-2 and DAF-16 are essential to the anti-aging efficacy of RbCl, and RbCl can promote DAF-16 translocating into the nucleus, suggesting that RbCl delays aging through regulating AMPK/FOXO pathway. RbCl can be a promising agent against aging related diseases.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Jing Ma ◽  
Xiaoyuan Xu ◽  
Ranran Wang ◽  
Haijing Yan ◽  
Huijuan Yao ◽  
...  

Abstract Background The present study was designed to investigate the protective effects and mechanisms of carnosine on lipopolysaccharide (LPS)-induced injury in Caenorhabditis elegans. Methods C. elegans individuals were stimulated for 24 h with LPS (100 μg/mL), with or without carnosine (0.1, 1, 10 mM). The survival rates and behaviors were determined. The activities of superoxide dismutase (SOD), glutathione reductase (GR), and catalase (CAT) and levels of malondialdehyde (MDA) and glutathione (GSH) were determined using the respective kits. Reverse transcription polymerase chain reaction (RT-PCR) was performed to validate the differential expression of sod-1, sod-2, sod-3, daf-16, ced-3, ced-9, sek-1, and pmk-1. Western blotting was used to determine the levels of SEK1, p38 mitogen-activated protein kinase (MAPK), cleaved caspase3, and Bcl-2. C. elegans sek-1 (km2) mutants and pmk-1 (km25) mutants were used to elucidate the role of the p38 MAPK signaling pathway. Results Carnosine improved the survival of LPS-treated C. elegans and rescued behavioral phenotypes. It also restrained oxidative stress by decreasing MDA levels and increasing SOD, GR, CAT, and GSH levels. RT-PCR results showed that carnosine treatment of wild-type C. elegans up-regulated the mRNA expression of the antioxidant-related genes sod-1, sod-2, sod-3, and daf-16. The expression of the anti-apoptosis-related gene ced-9 and apoptosis-related gene ced-3 was reversed by carnosine. In addition, carnosine treatment significantly decreased cleaved caspase3 levels and increased Bcl-2 levels in LPS-treated C. elegans. Apoptosis in the loss-of-function strains of the p38 MAPK signaling pathway was suppressed under LPS stress; however, the apoptotic effects of LPS were blocked in the sek-1 and pmk-1 mutants. The expression levels of sek-1 and pmk-1 mRNAs were up-regulated by LPS and reversed by carnosine. Finally, the expression of p-p38MAPK and SEK1 was significantly increased by LPS, which was reversed by carnosine. Conclusion Carnosine treatment protected against LPS injury by decreasing oxidative stress and inhibiting apoptosis through the p38 MAPK pathway.


2002 ◽  
Vol 365 (2) ◽  
pp. 547-553 ◽  
Author(s):  
Andrea SHATILLA ◽  
Dindial RAMOTAR

DNA bases continuously undergo modifications in response to endogenous reactions such as oxidation, alkylation or deamination. The modified bases are primarily removed by DNA glycosylases, which cleave the N-glycosylic bond linking the base to the sugar, to generate an apurinic/apyrimidinic (AP) site, and this latter lesion is highly mutagenic. Previously, no study has demonstrated the processing of these lesions in the nematode Caenorhabditis elegans. Herein, we report the existence of uracil-DNA glycosylase and AP endonuclease activities in extracts derived from embryos of C. elegans. These enzyme activities were monitored using a defined 5′-end 32P-labelled 42-bp synthetic oligonucleotide substrate bearing a single uracil residue opposite guanine at position 21. The embryonic extract rapidly cleaved the substrate in a time-dependent manner to produce a 20-mer product. The extract did not excise adenine or thymine opposite guanine, although uracil opposite either adenine or thymine was processed. Addition of the highly specific inhibitor of uracil-DNA glycosylase produced by Bacillus subtilis to the extract prevented the formation of the 20-mer product, indicating that removal of uracil is catalysed by uracil-DNA glycosylase. The data suggest that the 20-mer product was generated by a sequential reaction, i.e., removal of the uracil base followed by 5′-cleavage of the AP site. Further analysis revealed that product formation was dependent upon the presence of Mg2+, suggesting that cleavage of the AP site, following uracil excision, is carried out by a Mg2+-dependent AP endonuclease. It would appear that these activities correspond to the first two steps of a putative base-excision-repair pathway in C. elegans.


2014 ◽  
Vol 60 (1) ◽  
Author(s):  
Romina E. D’Almeida ◽  
María R. Alberto ◽  
Phillip Morgan ◽  
Margaret Sedensky ◽  
María I. Isla

AbstractZuccagnia punctata Cav. (Fabaceae), commonly called jarilla macho or pus-pus, is being used in traditional medicine as an antiseptic, anti-inflammatory and to relieve muscle and bone pain. The aim of this work was to study the anthelmintic effects of three structurally related flavonoids present in aerial parts of Z. punctata Cav. The biological activity of the flavonoids 7-hydroxyflavanone (HF), 3,7-dihydroxyflavone (DHF) and 2´,4´-dihydroxychalcone (DHC) was examined in the free-living nematode Caenorhabditis elegans. Our results showed that among the assayed flavonoids, only DHC showed an anthelmintic effect and alteration of egg hatching and larval development processes in C. elegans. DHC was able to kill 50% of adult nematodes at a concentration of 17 μg/mL. The effect on larval development was observed after 48 h in the presence of 25 and 50 μg/mL DHC, where 33.4 and 73.4% of nematodes remained in the L3 stage or younger. New therapeutic drugs with good efficacy against drug-resistant nematodes are urgently needed. Therefore, DHC, a natural compound present in Z. punctata, is proposed as a potential anthelmintic drug.


Sign in / Sign up

Export Citation Format

Share Document