scholarly journals A Smart Energy Harvesting Platform for Wireless Sensor Network Applications

Information ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 345 ◽  
Author(s):  
Gabriel Filios ◽  
Ioannis Katsidimas ◽  
Sotiris Nikoletseas ◽  
Ioannis Tsenempis

Advances in micro-electro-mechanical systems (MEMS) as well as the solutions for power scavenging can now provide feasible alternatives in a variety of applications. Wireless sensor networks (WSN), which operate on rechargeable batteries, could be based on a fresh basis which aims both at environmental power collection and wireless charging in various shapes and scales. Consequently, a potential illimitable energy supply can override the hypothesis of the limited energy budget (which can also impact the system’s efficiency). The presented platform is able to efficiently power a low power IoT system with processing, sensing and wireless transmission potentials. It incorporates a cutting-edge energy management IC that enables exceptional energy harvesting, applicable on low power and downsized energy generators. In contrast to other schemes, it supports not only a range of power supply alternatives, but also a compound energy depository system. The objective of this paper is to describe the design of the system, the integrated intelligence and the power autonomy performance.

2014 ◽  
Vol 687-691 ◽  
pp. 3391-3394
Author(s):  
Lei Jun Xu ◽  
Chang Shuo Wang ◽  
Xue Bai

This paper presents the design of a compact 2.45 GHz microstrip rectenna for wireless sensors’ power supply. In energy harvesting system, the ambient RF energy can be collected by the rectenna and converted to direct current, therefore, it can be applied to the power supply of low-power wireless sensor. Voltage doubling rectifier circuit and T-type microstrip impedance matching network are applied to this rectenna to increase the output voltage and the rectification efficiency. The antenna is fabricatied ​​by using double PCB board (FR4), and it is optimized by ADS to achieve the best performance. The measurement results show that the rectifier can reach the highest conversion efficiency of 78% when the load resistance is 320 Ω and the input power is 18 dBm. It also greatly improves rectenna’s conversion efficiency at lower input power when the input power is-20 dBm, which has great practical value for supplying low power consumption sensors.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1823
Author(s):  
Mohammad Haidar ◽  
Hussein Chible ◽  
Corrado Boragno ◽  
Daniele D. Caviglia

Sensor nodes have been assigned a lot of tasks in a connected environment that is growing rapidly. The power supply remains a challenge that is not answered convincingly. Energy harvesting is an emerging solution that is being studied to integrate in low power applications such as internet of things (IoT) and wireless sensor networks (WSN). In this work an interface circuit for a novel fluttering wind energy harvester is presented. The system consists of a switching converter controlled by a low power microcontroller. Optimization techniques on the hardware and software level have been implemented, and a prototype is developed for testing. Experiments have been done with generated input signals resulting in up to 67% efficiency for a constant voltage input. Other experiments were conducted in a wind tunnel that showed a transient output that is compatible with the target applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Daniel Ayala-Ruiz ◽  
Alejandro Castillo Atoche ◽  
Erica Ruiz-Ibarra ◽  
Edith Osorio de la Rosa ◽  
Javier Vázquez Castillo

Long power wide area networks (LPWAN) systems play an important role in monitoring environmental conditions for smart cities applications. With the development of Internet of Things (IoT), wireless sensor networks (WSN), and energy harvesting devices, ultra-low power sensor nodes (SNs) are able to collect and monitor the information for environmental protection, urban planning, and risk prevention. This paper presents a WSN of self-powered IoT SNs energetically autonomous using Plant Microbial Fuel Cells (PMFCs). An energy harvesting device has been adapted with the PMFC to enable a batteryless operation of the SN providing power supply to the sensor network. The low-power communication feature of the SN network is used to monitor the environmental data with a dynamic power management strategy successfully designed for the PMFC-based LoRa sensor node. Environmental data of ozone (O3) and carbon dioxide (CO2) are monitored in real time through a web application providing IoT cloud services with security and privacy protocols.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 978 ◽  
Author(s):  
Pierpaolo Loreti ◽  
Alexandro Catini ◽  
Massimiliano De Luca ◽  
Lorenzo Bracciale ◽  
Gabriele Gentile ◽  
...  

Energy management is a key issue in the design of long-lived wireless sensor networks. (WSNs). Energy is used to collect data by sensors and to communicate it to other nodes and to the gateways. The energy management procedures aim at minimizing the energy consumption of both the data acquisition and transmission activities. A careful design is crucial when the devices are powered by energy harvesting techniques, such as solar power. This paper describes a device architecture for a WSN node designed to monitor the habit of pink iguanas: a recently discovered species living in remote locations at the Galápagos Islands. The few individuals of this species live in a relatively small area (around 25 km2 on top of Volcano Wolf, Isla Isabela) that lacks of any available communication infrastructure. The design combines an ultra low power sleep mode and a long range communication capability that requires a very high power consumption.


2013 ◽  
Vol 391 ◽  
pp. 501-504
Author(s):  
De Hai Chen ◽  
Wei Feng Chao

The component of the greenhouse wireless sensor network was introduced, as the same time, its working process was presented. The wireless measurement nodes were designed based on nRF9E5. The hardware and software of the actuator nodes were studied, and according to the wireless communication system characteristic designing the system of hardware and software. The system was also debugged and test run. To reduce energy consumption, low-power components and low-power wireless transmission model were utilized, and the node had two operating model: active model and standby model. The wireless measurement system is reliable and expansibility.


Sign in / Sign up

Export Citation Format

Share Document