scholarly journals Copper Isotope Compositions of Superoxide Dismutase and Metallothionein from Post-Mortem Human Frontal Cortex

Inorganics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 86 ◽  
Author(s):  
Fiona Larner ◽  
Catriona A. McLean ◽  
Alex N. Halliday ◽  
Blaine R. Roberts

The natural copper isotopic compositions of superoxide dismutase and metallothionein from six post-mortem human frontal cortices were determined using a combination of size exclusion protein liquid chromatography, followed by anion exchange chromatography and multiple collector inductively-coupled plasma mass spectrometry. Superoxide dismutase was enriched in the heavier 65Cu relative to the metallothionein fraction in all specimen pairs. The isotopic compositions were independent of copper content. This finding provides evidence that nitrogen ligands in protein copper binding sites will be enriched in heavy metal isotopes, and sulphur ligands will preferentially incorporate lighter isotopes in vivo. This in turn has implications for understanding isotopic distributions within different components in the body and the dominant ligands in different tissues. Differences in Cu isotope distributions between the two proteins were seen between Alzheimer’s disease and healthy control samples, when normalised for sex.

Author(s):  
Ken-ji Yokoi ◽  
Sosyu Tsutsui ◽  
Gen-ya Arakawa ◽  
Masakazu Takaba ◽  
Koichi Fujii ◽  
...  

Abstract Information about the inulosucrase of non-lactic acid bacteria is scarce. We found a gene encoding inulosucrase (inuBK) in the genome of the gram-positive bacterium Alkalihalobacillus krulwichiae JCM 11691. The inuBK open reading frame encoded a protein comprising 456 amino acids. We expressed His-tagged InuBK in culture medium using a Brevibacillus system. The optimal pH and temperature of purified InuBK were 7.0–9.0 and 50 °C–55 °C, respectively. The findings of high-performance anion-exchange chromatography, nuclear magnetic resonance spectroscopy, and high-performance size-exclusion chromatography with multi-angle laser light scattering showed that the polysaccharide produced by InuBK was an inulin with a molecular weight of 3,806, a polydispersity index (PI) of 1.047, and fructosyl chain lengths with 3–27 degrees of polymerization. The size of InuBK was smaller than commercial inulins, and the PI of the inulin that it produced was lower.


1993 ◽  
Vol 290 (2) ◽  
pp. 623-626 ◽  
Author(s):  
K Karlsson ◽  
A Edlund ◽  
J Sandström ◽  
S L Marklund

The heparin-binding affinity of the tetrameric extracellular superoxide dismutase (EC-SOD) is a result of the cooperative effect of the heparin-binding domains of the subunits, located in the hydrophilic, strongly positively charged C-terminal ends. EC-SOD C, the high-heparin-affinity type, exposed to immobilized trypsin and plasmin was found to rapidly lose its affinity for heparin, without any loss of enzymic activity or major change in molecular mass as judged by size-exclusion chromatography. Heparin and dextran sulphate 5000 inhibited the proteolysis, suggesting that EC-SOD C sequestered by heparan sulphate proteoglycan in vivo is partially protected against proteolysis. The loss of heparin-affinity occurred with the stepwise formation of intermediates, and the pattern upon chromatography on heparin-Sepharose and subsequent immunoblotting was compatible with the notion that the changes are due to sequential truncations of heparin-binding domains from subunits composing the EC-SOD tetramers. A similar pattern with intermediates and apparent truncations has previously been found with EC-SOD of human plasma. The findings show that the unique design of the heparin-binding domain of EC-SOD allows easy modification of the heparin-affinity by means of limited proteolysis, and suggest that such proteolysis is a major contributor to the heterogeneity in heparin-affinity of EC-SOD in mammalian plasma.


2011 ◽  
Vol 31 (6) ◽  
pp. 465-475 ◽  
Author(s):  
Syed Rashel Kabir ◽  
Md. Abu Zubair ◽  
Md. Nurujjaman ◽  
Md. Azizul Haque ◽  
Imtiaj Hasan ◽  
...  

A lectin (termed NNTL) was purified from the extracts of Nymphaea nouchali tuber followed by anion-exchange chromatography on DEAE-cellulose, hydrophobic chromatography on HiTrap Phenyl HP and by repeated anion-exchange chromatography on HiTrap Q FF column. The molecular mass of the purified lectin was 27.0 ± 1.0 kDa, as estimated by SDS/PAGE both in the presence and in the absence of 2-mercaptoethanol. NNTL was an o-nitrophenyl β-D-galactopyranoside sugar-specific lectin that agglutinated rat, chicken and different groups of human blood cells and exhibited high agglutination activity over the pH range 5–9 and temperatures of 30–60°C. The N-terminal sequence of NNTL did not show sequence similarity with any other lectin and the amino acid analysis revealed that NNTL was rich in leucine, methionine and glycine residues. NNTL was a glycoprotein containing 8% neutral sugar and showed toxicity against brine shrimp nauplii with an LC50 value of 120 ± 29 μg/ml and exerted strong agglutination activity against four pathogenic bacteria (Bacillus subtilis, Sarcina lutea, Shigella shiga and Shigella sonnei). In addition, antiproliferative activity of this lectin against EAC (Ehrlich ascites carcinoma) cells showed 56% and 76% inhibition in vivo in mice at 1.5 and 3 mg·kg−1·day−1 respectively. NNTL was a divalent ion-dependent glycoprotein, which lost its activity markedly in the presence of denaturants. Furthermore, measurement of fluorescence spectra in the presence and absence of urea and CaCl2 indicated the requirement of Ca2+ for the stability of NNTL.


2020 ◽  
Vol 10 (8) ◽  
pp. 2648 ◽  
Author(s):  
Paolina Lukova ◽  
Mariana Nikolova ◽  
Emmanuel Petit ◽  
Redouan Elboutachfaiti ◽  
Tonka Vasileva ◽  
...  

The aim of the present study was to evaluate the prebiotic potential of Plantago major L. leaves water-extractable polysaccharide (PWPs) and its lower molecular fractions. The structure of PWPs was investigated by high pressure anion exchange chromatography (HPAEC), size exclusion chromatography coupled with multi-angle laser light scattering detector (SEC-MALLS) and Fourier-transform infrared (FTIR) spectroscopy. The chemical composition and monosaccharide analyses showed that galacturonic acid was the main monosaccharide of PWPs followed by glucose, arabinose, galactose, rhamnose and xylose. FTIR study indicated a strong characteristic absorption peak at 1550 cm−1 corresponding to the vibration of COO− group of galacturonic acid. The PWPs was subjected to hydrolysis using commercial enzymes to obtain P. major low molecular fraction (PLM) which was successively separated by size exclusion chromatography on Biogel P2. PWPs and PLM were examined for in vitro prebiotic activity using various assays. Results gave evidence for changes in optical density of the bacteria cells and pH of the growth medium. A heterofermentative process with a lactate/acetate ratio ranged from 1:1 to 1:5 was observed. The ability of PLM to stimulate the production of certain probiotic bacteria glycohydrolases and to be fermented by Lactobacillus sp. strains was successfully proved.


1993 ◽  
Vol 291 (3) ◽  
pp. 713-721 ◽  
Author(s):  
M Odenthal-Schnittler ◽  
S Tomavo ◽  
D Becker ◽  
J F Dubremetz ◽  
R T Schwarz

In this paper we report experiments demonstrating the presence of N-linked oligosaccharide structures in Toxoplasma gondii tachyzoites, providing the first direct biochemical evidence that this sporozoan parasite is capable of synthesizing N-linked glycans. The tachyzoite surface glycoprotein gp23 was metabolically labelled with [3H]glucosamine and [3H]mannose. Gel-filtration chromatography on Bio-Gel P4 columns produced four radiolabelled N-linked glycopeptides which were sensitive to peptidase-N-glycanase F, but resistant to endoglycosidases H and F. Using chemical analysis and exoglycosidase digestions followed by Dionex-high-pH anion-exchange chromatography and size fractionation on Bio-Gel P4 we show that gp23 has N-linked glycans in the hybrid- or complex-type structure composed of N-acetylgalactosamine, N-acetylglucosamine and mannose and devoid of sialic acid and fucose residues. In addition, the sensitivity of glycopeptides from glycoprotein extracts to endoglycosidases H and F revealed the in vivo synthesis of oligomannose-type structures by T. gondii tachyzoites. We have extended these findings by demonstrating the ability of T. gondii microsomes to synthesize in vitro a glucosylated lipid-bound high-mannose structure (Glc3Man9GlcNAc2) that is assumed to be identical with the common precursor for N-glycosylation in eukaryotes.


Sign in / Sign up

Export Citation Format

Share Document