scholarly journals Scaling Up Metal Hydrides for Real-Scale Applications: Achievements, Challenges and Outlook

Inorganics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 37
Author(s):  
Emil H. Jensen ◽  
Martin Dornheim ◽  
Sabrina Sartori

As the world evolves, so does the energy demand. The storage of hydrogen using metal hydrides shows great promise due to the ability to store and deliver energy on demand while achieving higher volumetric density and safer storage conditions compared with traditional storage options such as compressed gas or liquid hydrogen. Research is typically performed on lab-sized samples and tanks and shows great potential for large scale applications. However, the effects of scale-up on the metal hydride’s performance are relatively less investigated. Studies performed so far on both materials, and hydride-based storage tanks show that the scale-up can significantly impact the system’s capacity, kinetics, and sorption properties. The findings presented in this review suggest areas of further investigation in order to implement metal hydrides in real scale applications.

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3175
Author(s):  
Maximilian Philipp ◽  
Khaoula Masmoudi Jabri ◽  
Johannes Wellmann ◽  
Hanene Akrout ◽  
Latifa Bousselmi ◽  
...  

Slaughterhouses produce a large amount of wastewater, therefore, with respect to the increasing water scarcity, slaughterhouse wastewater (SWW) recycling seems to be a desirable goal. The emerging challenges and opportunities for recycling and reuse have been examined here. The selection of a suitable process for SWW recycling is dependent on the characteristics of the wastewater, the available technology, and the legal requirements. SWW recycling is not operated at a large scale up to date, due to local legal sanitary requirements as well as challenges in technical implementation. Since SWW recycling with single-stage technologies is unlikely, combined processes are examined and evaluated within the scope of this publication. The process combination of dissolved air flotation (DAF) followed by membrane bioreactor (MBR) and, finally, reverse osmosis (RO) as a polishing step seems to be particularly promising. In this way, wastewater treatment for process water reuse could be achieved in theory, as well as in comparable laboratory experiments. Furthermore, it was calculated via the methane production potential that the entire energy demand of wastewater treatment could be covered if the organic fraction of the wastewater was used for biogas production.


2017 ◽  
Vol 65 (8) ◽  
pp. 625 ◽  
Author(s):  
Gabrielle S. Vening ◽  
Lydia K. Guja ◽  
Peter G. Spooner ◽  
Jodi N. Price

Restoration is vital for the re-establishment and maintenance of biodiversity of temperate grassy woodlands, but limited understanding of species’ reproductive biology restricts the efficiency of restoration practice. The present study aimed to explore germination cues and seed dormancy of Dianella longifolia R.Br., Dianella revoluta R.Br., and Stackhousia monogyna Labill., three native Australian forb species that have been difficult to germinate in large-scale restoration projects. A series of experiments investigated the effect of various dormancy-alleviation or germination-promoting treatments on germination of these three species. Significant interactions were found between some treatments and germination temperatures for D. longifolia and S. monogyna, but no significant interactions were observed for D. revoluta. At optimal temperatures, scarification treatment produced the highest mean germination for D. longifolia and S. monogyna, and this was significantly higher than for control seeds. Storage conditions (ambient, dry, frozen) did not decrease viability after 10 weeks of storage, suggesting that seeds of all species are likely to be orthodox. To maximise the effectiveness of seed use in restoration programs, it is recommended that scarification of D. longifolia and S. monogyna seed be undertaken to improve field germination. Further work should focus on how to scale up application of the scarification treatment, optimise methods for alleviating dormancy in D. revoluta, and examine the ecological cues that naturally alleviate dormancy and promote germination of these three species.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1879
Author(s):  
Panagiotis Fragkos

The Paris Agreement has set out ambitious climate goals aiming to keep global warming well-below 2 °C by 2100. This requires a large-scale transformation of the global energy system based on the uptake of several technological options to reduce drastically emissions, including expansion of renewable energy, energy efficiency improvements, and fuel switch towards low-carbon energy carriers. The current study explores the role of Carbon Capture and Storage (CCS) as a mitigation option, which provides a dispatchable source for carbon-free production of electricity and can also be used to decarbonise industrial processes. In the last decade, limited technology progress and slow deployment of CCS technologies worldwide have increased the concerns about the feasibility and potential for massive scale-up of CCS required for deep decarbonisation. The current study uses the state-of-the-art PROMETHEUS global energy demand and supply system model to examine the role and impacts of CCS deployment in a global decarbonisation context. By developing contrasted decarbonisation scenarios, the analysis illustrates that CCS deployment might bring about various economic and climate benefits for developing economies, in the form of reduced emissions, lower mitigation costs, ensuring the cost efficient integration of renewables, limiting stranded fossil fuel assets, and alleviating the negative distributional impacts of cost-optimal policies for developing economies.


Author(s):  
S. Pragati ◽  
S. Kuldeep ◽  
S. Ashok ◽  
M. Satheesh

One of the situations in the treatment of disease is the delivery of efficacious medication of appropriate concentration to the site of action in a controlled and continual manner. Nanoparticle represents an important particulate carrier system, developed accordingly. Nanoparticles are solid colloidal particles ranging in size from 1 to 1000 nm and composed of macromolecular material. Nanoparticles could be polymeric or lipidic (SLNs). Industry estimates suggest that approximately 40% of lipophilic drug candidates fail due to solubility and formulation stability issues, prompting significant research activity in advanced lipophile delivery technologies. Solid lipid nanoparticle technology represents a promising new approach to lipophile drug delivery. Solid lipid nanoparticles (SLNs) are important advancement in this area. The bioacceptable and biodegradable nature of SLNs makes them less toxic as compared to polymeric nanoparticles. Supplemented with small size which prolongs the circulation time in blood, feasible scale up for large scale production and absence of burst effect makes them interesting candidates for study. In this present review this new approach is discussed in terms of their preparation, advantages, characterization and special features.


2020 ◽  
Vol 27 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Niaz Ahmad ◽  
Muhammad Aamer Mehmood ◽  
Sana Malik

: In recent years, microalgae have emerged as an alternative platform for large-scale production of recombinant proteins for different commercial applications. As a production platform, it has several advantages, including rapid growth, easily scale up and ability to grow with or without the external carbon source. Genetic transformation of several species has been established. Of these, Chlamydomonas reinhardtii has become significantly attractive for its potential to express foreign proteins inexpensively. All its three genomes – nuclear, mitochondrial and chloroplastic – have been sequenced. As a result, a wealth of information about its genetic machinery, protein expression mechanism (transcription, translation and post-translational modifications) is available. Over the years, various molecular tools have been developed for the manipulation of all these genomes. Various studies show that the transformation of the chloroplast genome has several advantages over nuclear transformation from the biopharming point of view. According to a recent survey, over 100 recombinant proteins have been expressed in algal chloroplasts. However, the expression levels achieved in the algal chloroplast genome are generally lower compared to the chloroplasts of higher plants. Work is therefore needed to make the algal chloroplast transformation commercially competitive. In this review, we discuss some examples from the algal research, which could play their role in making algal chloroplast commercially successful.


2021 ◽  
Vol 102 (8) ◽  
pp. 8-13
Author(s):  
Thomas Hatch

Taking advantage of the possibilities for learning outside of school requires us to build on what we know about why it is so hard to sustain and scale up unconventional educational experiences within conventional schools. To illustrate the opportunities and challenges, Thomas Hatch describes a large-scale approach to project-based learning developed in a camp in New Hampshire and incorporated in a Brooklyn school, a trip-based program in Detroit, and Singapore’s systemic embrace of learning outside school. By understanding the conditions that can sustain alternative instructional practices, educators can find places to challenge the boundaries of schooling and create visions of the possible that exceed current constraints.


2021 ◽  
pp. 037957212098250
Author(s):  
Jennifer K. Foley ◽  
Kristina D. Michaux ◽  
Bho Mudyahoto ◽  
Laira Kyazike ◽  
Binu Cherian ◽  
...  

Background: Micronutrient deficiencies affect over one quarter of the world’s population. Biofortification is an evidence-based nutrition strategy that addresses some of the most common and preventable global micronutrient gaps and can help improve the health of millions of people. Since 2013, HarvestPlus and a consortium of collaborators have made impressive progress in the enrichment of staple crops with essential micronutrients through conventional plant breeding. Objective: To review and highlight lessons learned from multiple large-scale delivery strategies used by HarvestPlus to scale up biofortification across different country and crop contexts. Results: India has strong public and private sector pearl millet breeding programs and a robust commercial seed sector. To scale-up pearl millet, HarvestPlus established partnerships with public and private seed companies, which facilitated the rapid commercialization of products and engagement of farmers in delivery activities. In Nigeria, HarvestPlus stimulated the initial acceptance and popularization of vitamin A cassava using a host of creative approaches, including “crowding in” delivery partners, innovative promotional programs, and development of intermediate raw material for industry and novel food products. In Uganda, orange sweet potato (OSP) is a traditional subsistence crop. Due to this, and the lack of formal seed systems and markets, HarvestPlus established a network of partnerships with community-based nongovernmental organizations and vine multipliers to popularize and scale-up delivery of OSP. Conclusions: Impact of biofortification ultimately depends on the development of sustainable markets for biofortified seeds and products. Results illustrate the need for context-specific, innovative solutions to promote widespread adoption.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4517
Author(s):  
Saheli Biswas ◽  
Shambhu Singh Rathore ◽  
Aniruddha Pramod Kulkarni ◽  
Sarbjit Giddey ◽  
Sankar Bhattacharya

Reversible solid oxide cells (rSOC) enable the efficient cyclic conversion between electrical and chemical energy in the form of fuels and chemicals, thereby providing a pathway for long-term and high-capacity energy storage. Amongst the different fuels under investigation, hydrogen, methane, and ammonia have gained immense attention as carbon-neutral energy vectors. Here we have compared the energy efficiency and the energy demand of rSOC based on these three fuels. In the fuel cell mode of operation (energy generation), two different routes have been considered for both methane and ammonia; Routes 1 and 2 involve internal reforming (in the case of methane) or cracking (in the case of ammonia) and external reforming or cracking, respectively. The use of hydrogen as fuel provides the highest round-trip efficiency (62.1%) followed by methane by Route 1 (43.4%), ammonia by Route 2 (41.1%), methane by Route 2 (40.4%), and ammonia by Route 1 (39.2%). The lower efficiency of internal ammonia cracking as opposed to its external counterpart can be attributed to the insufficient catalytic activity and stability of the state-of-the-art fuel electrode materials, which is a major hindrance to the scale-up of this technology. A preliminary cost estimate showed that the price of hydrogen, methane and ammonia produced in SOEC mode would be ~1.91, 3.63, and 0.48 $/kg, respectively. In SOFC mode, the cost of electricity generation using hydrogen, internally reformed methane, and internally cracked ammonia would be ~52.34, 46.30, and 47.11 $/MWh, respectively.


Sign in / Sign up

Export Citation Format

Share Document